Câu hỏi:

16/11/2025 108 Lưu

Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t của năm không nhuận được cho bởi một hàm số \(y = 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] + 10\) với t ∈ ℕ và \(0 < t \le 365\). Gọi a là ngày có nhiều giờ có ánh sáng mặt trời nhất và b là ngày có ít giờ có ánh sáng mặt trời nhất trong năm. Tính a + b.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \( - 1 \le \sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] \le 1\)\( \Leftrightarrow - 4 \le 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] \le 4\)\( \Leftrightarrow 6 \le 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] + 10 \le 14\).

Số giờ có ánh sáng mặt trời nhiều nhất là 14 khi \(\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] = 1\)\( \Leftrightarrow \frac{\pi }{{178}}\left( {t - 60} \right) = \frac{\pi }{2} + k2\pi \)

\( \Leftrightarrow t = 149 + 356k\).

Vì \(0 < t \le 365\) nên ngày có nhiều giờ có ánh sáng mặt trời nhất là ngày 149.

Số giờ có ít ánh sáng mặt trời nhất là 6 khi \(\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] = - 1\)\( \Leftrightarrow \frac{\pi }{{178}}\left( {t - 60} \right) = - \frac{\pi }{2} + k2\pi \)

\( \Leftrightarrow t = - 29 + 356k\).

Vì \(0 < t \le 365\) nên ngày có ít giờ có ánh sáng mặt trời nhất là ngày 327.

Suy ra \(a = 149;b = 327\). Do đó \(a + b = 476\).

Trả lời: 476.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\sin \left( {x + \frac{\pi }{4}} \right) = 0\)\( \Leftrightarrow x + \frac{\pi }{4} = k\pi \)\( \Leftrightarrow x = - \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\).

Vì \(x \in \left[ {0;2025\pi } \right]\) nên \(0 \le - \frac{\pi }{4} + k\pi \le 2025\pi \)\( \Leftrightarrow \frac{1}{4} \le k \le \frac{{8101}}{4}\) mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ {1;2;..;2025} \right\}\).

Khi đó \(S = \frac{{3\pi }}{4} + \frac{{7\pi }}{4} + \frac{{11\pi }}{4} + ... + \frac{{8099\pi }}{4}\)\( = \frac{\pi }{4}\left( {3 + 7 + 11 + ... + 8099} \right)\)\( = \frac{\pi }{4}.\frac{{\left( {3 + 8099} \right).2025}}{2} = \frac{{4051.2025\pi }}{4}\).

Khi đó \(\frac{{4S}}{{2025\pi }} = \frac{4}{{2025\pi }}.\frac{{4051.2025\pi }}{4} = 4051\).

Trả lời: 4051.

Câu 2

\(x \ne \frac{\pi }{2} + k\pi \).

\(x \ne \frac{\pi }{4} + k\pi \).

\(x \ne \frac{\pi }{2} + k\frac{\pi }{2}\).

\(x \ne k\pi \).

Lời giải

Điều kiện: \(\tan x \ne 0\)\( \Leftrightarrow \left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x \ne k\pi \\x \ne \frac{\pi }{2} + k\pi \end{array} \right.\)\( \Rightarrow x \ne \frac{\pi }{2} + k\frac{\pi }{2}\). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\(x = \frac{\pi }{2} + k\pi \).

\(x = \frac{\pi }{4} + k\pi \).

\(x = \frac{\pi }{2} + k2\pi \).

\(x = \frac{\pi }{4} + k\frac{\pi }{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP