Câu hỏi:

18/11/2025 4 Lưu

(1 điểm) Kiểm tra chiều dài của 10 con cá voi xanh trưởng thành được kết quả như sau (đơn vị: mét)

26      25      27      27      33      26      24      26      21      31.

a) Hãy tìm số trung bình, khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn của mẫu số liệu trên.

b) Xác định các giá trị bất thường (nếu có) của mẫu số liệu trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:

21      24      25      26      26      26      27      27      31      33.

+ Chiều dài trung bình của cá voi xanh trưởng thành là

\(\overline X  = \frac{{21 + 24 + 25 + 26 \cdot 3 + 27 \cdot 2 + 31 + 33}}{{10}} = 26,6\).

+ Khoảng biến thiên của mẫu số liệu là \(R = 33 - 21 = 12\).

+ Vì mẫu có 10 số liệu nên trung vị hay tứ phân vị thứ hai là trung bình cộng của số ở vị trí thứ 5 và 6. Do đó, \({Q_2} = \frac{{26 + 26}}{2} = 26\).

Tứ phân vị thứ nhất là trung vị của mẫu: 21 24      25      26          26. Do đó, \({Q_1} = 25\).

Tứ phân vị thứ ba là trung vị của mẫu: 26     27      27      31          33. Do đó, \({Q_3} = 27\).

Khoảng tứ phân vị của mẫu số liệu là \({\Delta _Q} = {Q_3} - {Q_1} = 27 - 25 = 2\).

+ Phương sai mẫu số liệu là

\({s^2} = \frac{{{{\left( {21 - 26,6} \right)}^2} + {{\left( {24 - 26,6} \right)}^2} + ... + {{\left( {31 - 26,6} \right)}^2}}}{{10}} = 10,24\).

Độ lệch chuẩn của mẫu số liệu là \(s = \sqrt {{s^2}}  = \sqrt {10,24}  = 3,2\).

b) Ta có: \({Q_1} - 1,5{\Delta _Q} = 25 - 1,5 \cdot 2 = 22\), \({Q_3} + 1,5{\Delta _Q} = 27 + 1,5 \cdot 2 = 30\).

Mẫu số liệu đã cho có các số liệu 21 < 22, 31 > 30, 33 > 30.

Vậy mẫu số liệu có các giá trị bất thường là 21, 31, 33.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thang vuông \(ABCD (ảnh 1)

a) Ta có: \[AC \bot DB \Leftrightarrow \overrightarrow {AC}  \cdot \overrightarrow {BD}  = 0\]

\[\overrightarrow {AC}  \cdot \overrightarrow {BD}  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right)\left( {\overrightarrow {AD}  - \overrightarrow {AB} } \right)\]

\[ = \overrightarrow {AB}  \cdot \overrightarrow {AD}  - A{B^2} + \overrightarrow {BC}  \cdot \overrightarrow {AD}  - \overrightarrow {BC}  \cdot \overrightarrow {AB} \]

Ta lại có: \[\overrightarrow {AB}  \cdot \overrightarrow {AD}  = \overrightarrow {BC}  \cdot \overrightarrow {AB}  = 0\]

Và \[A{B^2} = {h^2},\overrightarrow {BC}  \cdot \overrightarrow {AD}  = BC \cdot AD = ab\] .

Do đó, \[\overrightarrow {AC}  \cdot \overrightarrow {BD}  = 0 - {h^2} + ab - 0 = ab - {h^2}\].

Vậy \[\overrightarrow {AC}  \bot \overrightarrow {BD}  \Leftrightarrow ab - {h^2} = 0\].

b) Vì \(I\) là trung điểm \(CD\) nên \[\overrightarrow {AI}  = \frac{1}{2}\left( {\overrightarrow {AC}  + \overrightarrow {AD} } \right)\] và \[\overrightarrow {BI}  = \frac{1}{2}\left( {\overrightarrow {BC}  + \overrightarrow {BD} } \right)\].

Khi đó ta có: \[\widehat {AIB} = 90^\circ  \Leftrightarrow \overrightarrow {AI}  \cdot \overrightarrow {BI}  = 0 \Leftrightarrow \left( {\overrightarrow {AC}  + \overrightarrow {AD} } \right)\left( {\overrightarrow {BC}  + \overrightarrow {BD} } \right) = 0\]

\[ \Leftrightarrow \overrightarrow {AC}  \cdot \overrightarrow {BC}  + \overrightarrow {AC}  \cdot \overrightarrow {BD}  + \overrightarrow {AD}  \cdot \overrightarrow {BC}  + \overrightarrow {AD}  \cdot \overrightarrow {BD}  = 0\]

Mà \[\overrightarrow {AC}  \cdot \overrightarrow {BC}  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right)\overrightarrow {BC}  = \overrightarrow {AB}  \cdot \overrightarrow {BC}  + {\overrightarrow {BC} ^2} = 0 + B{C^2} = {b^2}\]; \[\overrightarrow {AC}  \cdot \overrightarrow {BD}  = ab - {h^2}\];

\[\overrightarrow {AD}  \cdot \overrightarrow {BC}  = AD \cdot BC = ab\]; \[\overrightarrow {AD}  \cdot \overrightarrow {BD}  = \overrightarrow {AD} \left( {\overrightarrow {BA}  + \overrightarrow {AD} } \right) = \overrightarrow {AD}  \cdot \overrightarrow {BA}  + {\overrightarrow {AD} ^2} = 0 + A{D^2} = {a^2}\].

Do đó, ta có: \[\widehat {AIB} = 90^\circ  \Leftrightarrow {a^2} + {b^2} - {h^2} + 2ab = 0 \Leftrightarrow a + b = h.\]

Câu 2

A. \(x = 1;\,\,y = 13\); 
B. \(x = 13;\,y = 1\);       
C. \(x = - 13;\,y = 1\);                 
D. \(x = - 1;\,y = 13\).

Lời giải

Đáp án đúng là: B

\(P\) là trung điểm của \(MN\) khi và chỉ khi \[\left\{ \begin{array}{l}\frac{{5 + x}}{2} = x - 4\\\frac{{3 + y}}{2} = y + 1\end{array} \right.\]

\( \Leftrightarrow \left\{ \begin{array}{l}5 + x = 2x - 8\\3 + y = 2y + 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 13\\y = 1\end{array} \right.\).

Vậy \(x = 13;\,\,y = 1\).

Câu 3

Cho hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) ngược hướng, biết \(\left| {\overrightarrow a } \right| = 2,\,\left| {\overrightarrow b } \right| = 8\). Giá trị \(\overrightarrow a \cdot \overrightarrow b \) bằng

A. – 16;                       
B. 16;                               
C. 4;      
D. \(\frac{1}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\(\overrightarrow {OA}  \cdot \overrightarrow {OB}  = 0\) ;                                                                                           
B.\(\overrightarrow {OA}  \cdot \overrightarrow {OC}  = \frac{1}{2}\overrightarrow {OA}  \cdot \overrightarrow {AC} \);
C.\(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = \overrightarrow {AB}  \cdot \overrightarrow {CD} \);                                                        
D.\(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = \overrightarrow {AC}  \cdot \overrightarrow {AD} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

I. Trắc nghiệm (6 điểm)

Trong các phát biểu sau, phát biểu nào là mệnh đề?

A. “Bất phương trình \(3x + 2 < 0\) có nghiệm”;               
B. “Bất phương trình \(3x + 2 < 0\) có phải là bất phương trình bậc nhất hai ẩn không?”;
C. Bất phương trình \(3x + 2 < 0\) là bất phương trình bậc nhất hai ẩn;
D. “Bất phương trình \(3x + 2 < 0\) có vô số nghiệm”.     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho tập hợp \(E = \left\{ {x \in \mathbb{N}|x = 7 - n,n \in \mathbb{N}} \right\}\). Viết tập hợp \(E\) dưới dạng liệt kê các phần tử ta được 

A. \(E = \left\{ {1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,6;\,\,7} \right\}\);                     
B. \(E = \left\{ {0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,6;\,\,7} \right\}\);  
C. \(E = \left\{ {0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,6;\,\,7;\,\,8;\,\,9} \right\}\);                     
D. \(E = \left\{ {1;\,\,3;\,\,5;\,\,7} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP