Câu hỏi:

19/11/2025 7 Lưu

Cho biết \[2\cos \alpha + \sqrt 2 \sin \alpha = 2,\,0^\circ < \alpha < 90^\circ \]. Tính giá trị của \[\cot \alpha \]?

A. \[\cot \alpha = \frac{{\sqrt 2 }}{4}\];      
B. \[\cot \alpha = \frac{{\sqrt 3 }}{4}\];      
C. \[\cot \alpha = \frac{{\sqrt 5 }}{4}\];         
D. \[\cot \alpha = \frac{{\sqrt 2 }}{2}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

\[\begin{array}{l}2\cos \alpha + \sqrt 2 \sin \alpha = 2\\ \Leftrightarrow \sqrt 2 \sin \alpha = 2 - 2\cos \alpha \\ \Rightarrow 2{\sin ^2}\alpha = {\left( {2 - 2\cos \alpha } \right)^2}\\ \Leftrightarrow 2 - 2{\cos ^2}\alpha = 4 - 8\cos \alpha + 4{\cos ^2}\alpha \\ \Leftrightarrow 6{\cos ^2}\alpha - 8\cos \alpha + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}\cos \alpha = 1\\\cos \alpha = \frac{1}{3}\end{array} \right.\end{array}\]

Nếu \[\cos \alpha = 1\]: không thỏa mãn vì \[0^\circ < \alpha < 90^\circ \].

Nếu \[\cos \alpha = \frac{1}{3} \Rightarrow \sin \alpha = \frac{{2\sqrt 2 }}{3} \Rightarrow \cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{\sqrt 2 }}{4}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\sin \widehat {BAH} = \frac{{\sqrt 3 }}{2}\];                                          
B. \[\sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}\];
C. \[\cos \widehat {BAH} = \frac{1}{{\sqrt 3 }}\];                                          
D. \[\sin \widehat {AHC} = \frac{1}{2}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Tam giác \[ABC\] là tam giác đều có đường cao \[AH\] nên \[AH\] cũng là đường phân giác của tam giác \[ABC\].

\[ \Rightarrow \widehat {BAH} = \widehat {HAC} = 30^\circ \Rightarrow \left\{ \begin{array}{l}\sin \widehat {BAH} = \sin \widehat {HAC} = \frac{1}{2}\\\cos \widehat {BAH} = \frac{{\sqrt 3 }}{2}\end{array} \right.\]

\[\widehat {ABC} = 60^\circ \Rightarrow \sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}\].

Do đó B đúng.

Câu 2

A. \[I\left( { - \frac{b}{{2a}};\,\frac{\Delta }{{4a}}} \right)\];                                                  
B. \[I\left( { - \frac{b}{a};\, - \frac{\Delta }{{4a}}} \right)\];
C. \[I\left( { - \frac{b}{{2a}};\, - \frac{\Delta }{{4a}}} \right)\];                                                   
D. \[I\left( {\frac{b}{{2a}};\,\frac{\Delta }{{4a}}} \right)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Trong mặt phẳng tọa độ \[Oxy\], đồ thị hàm số bậc hai \[y = a{x^2} + bx + c\,(a \ne 0)\] là một parabol \[(P)\]:

Có đỉnh \[S\] với hoành độ \[{x_S} = - \frac{b}{{2a}}\], tung độ \[{y_S} = - \frac{\Delta }{{4a}}\].

Do đó C đúng.

Câu 3

A. \[S = \left( { - \infty ;\,1 - \sqrt 2 } \right)\];                                      
B. \[S = \left( {1 - \sqrt 2 ;\, + \infty } \right)\];
C. \[S = \emptyset \];                                                          
D. \[S = \mathbb{R}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[2\];                           
B. \[4\];                            
C. \[6\];                               
D. \[8\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[M\];                
B. \[N\];                           
C. \[P\];                          
D. \[Q\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[21\sqrt 2 \];                         
B. \[\frac{{21\sqrt 2 }}{2}\];                               
C. \[5\sqrt 2 \];                
D. \[ - \frac{{\sqrt 2 }}{2}\].     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP