Trên nóc một tòa nhà có một ăng-ten cao \[5m\] . Từ vị trí quan sát \[A\] cao \[7m\] so với mặt đất có thể nhìn thấy đỉnh \[B\] và chân \[C\] của cột ăng-ten dưới góc \[50^\circ \] và \[40^\circ \] so với phương nằm ngang.
Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Ta có: \[\widehat {BAC} = \widehat {BAD} - \widehat {DAC} = 10^\circ \].
\[\widehat {ABD} = 180^\circ - \left( {\widehat {BAD} + \widehat {ADC}} \right) = 180^\circ - \left( {50^\circ + 90^\circ } \right) = 40^\circ \]
Áp dụng định lý sin trong tam giác \[ABC\], có:
\[\begin{array}{l}\frac{{BC}}{{\sin \widehat {BAC}}} = \frac{{AC}}{{\sin \widehat {ABC}}}\\ \Rightarrow AC = \frac{{BC.\sin \widehat {ABC}}}{{\sin \widehat {BAC}}} = \frac{{5.\sin 40^\circ }}{{\sin 10^\circ }} \approx 18,5.\end{array}\]
Xét tam giác vuông \[ADC\], có:
\[\widehat {CAD} = \frac{{CD}}{{AC}} \Rightarrow CD = AC.\sin \widehat {CAD} = 18,5.\sin 40^\circ \approx 11,9\].
Vậy \[CH = CD + DH = 11,9 + 7 = 18,9\left( m \right) \Rightarrow CH \approx 19m\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Tam giác \[ABC\] là tam giác đều có đường cao \[AH\] nên \[AH\] cũng là đường phân giác của tam giác \[ABC\].
\[ \Rightarrow \widehat {BAH} = \widehat {HAC} = 30^\circ \Rightarrow \left\{ \begin{array}{l}\sin \widehat {BAH} = \sin \widehat {HAC} = \frac{1}{2}\\\cos \widehat {BAH} = \frac{{\sqrt 3 }}{2}\end{array} \right.\]
Vì \[\widehat {ABC} = 60^\circ \Rightarrow \sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}\].
Do đó B đúng.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Trong mặt phẳng tọa độ \[Oxy\], đồ thị hàm số bậc hai \[y = a{x^2} + bx + c\,(a \ne 0)\] là một parabol \[(P)\]:
Có đỉnh \[S\] với hoành độ \[{x_S} = - \frac{b}{{2a}}\], tung độ \[{y_S} = - \frac{\Delta }{{4a}}\].
Do đó C đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.