Giải phương trình \(\sin x + 1 = 0\) ta được tập nghiệm là
Câu hỏi trong đề: Đề kiểm tra Toán 11 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:
\(\sin x + 1 = 0\)\( \Leftrightarrow \sin x = - 1\)\( \Leftrightarrow x = - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\). Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(\sin \left( {2x + \frac{\pi }{3}} \right) = \sin x\)\( \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{3} = x + k2\pi \\2x + \frac{\pi }{3} = \pi - x + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{3} + k2\pi \\x = \frac{{2\pi }}{9} + k\frac{{2\pi }}{3}\end{array} \right.,k \in \mathbb{Z}\).
Vì x là nghiệm dương nhỏ nhất nên \(x = \frac{{2\pi }}{9}\) ứng với k = 0.
Suy ra m = 2; n = 9. Do đó \(m + 2n = 20\).
Trả lời: 20.
Lời giải
Do \(\frac{\pi }{2} < \alpha < \pi \) nên cosα < 0.
Ta có \({\cos ^2}\alpha = 1 - {\sin ^2}\alpha = \frac{{24}}{{25}}\). Suy ra \(\cos \alpha = - \frac{{2\sqrt 6 }}{5}\).
Ta có \(\cos 2\alpha = 2{\cos ^2}\alpha - 1 = \frac{{23}}{{25}}\) và \(\sin 2\alpha = 2\sin \alpha .\cos \alpha = - \frac{{4\sqrt 6 }}{{25}}\).
Do đó \(\cot 2\alpha = \frac{{\cos 2\alpha }}{{\sin 2\alpha }} = - \frac{{23\sqrt 6 }}{{24}}\).
Khi đó \(a = 23;b = 24\). Vậy \(a + b = 47\).
Trả lời: 47.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Rút gọn biểu thức \(M = \frac{{\sin 2x}}{{\sin x}} - \frac{{\cos 2x}}{{\cos x}}\) ta được kết quả là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

