Câu hỏi:

18/12/2025 125 Lưu

Cho hình vuông \(ABCD\) có cạnh bằng 2a. Tính \(\left| {\overrightarrow {DA} + \overrightarrow {DB} } \right|\).

A. \(\frac{{\sqrt 5 }}{2}a\).                                        
B. \(2\sqrt 2 a\).                
C. \(2\sqrt 5 a\).                        
D. \(\sqrt 5 a\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình vuông \(ABCD\) có cạnh bằng 2a. (ảnh 1)

Ta có \({\left( {\overrightarrow {DA} + \overrightarrow {DB} } \right)^2} = {\overrightarrow {DA} ^2} + 2\overrightarrow {DA} \cdot \overrightarrow {DB} + {\overrightarrow {DB} ^2}\)\( = {\overrightarrow {DA} ^2} + 2\left| {\overrightarrow {DA} } \right| \cdot \left| {\overrightarrow {DB} } \right| \cdot \cos \left( {\overrightarrow {DA} ,\overrightarrow {DB} } \right) + {\overrightarrow {DB} ^2}\)

\( = 4{a^2} + 2 \cdot 2a \cdot 2\sqrt 2 a \cdot \cos 45^\circ + 8{a^2}\)\( = 20{a^2}\)\( \Leftrightarrow \left| {\overrightarrow {DA} + \overrightarrow {DB} } \right| = 2\sqrt 5 a\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác đều \(ABC\) và các điểm \(M,N,P\) thỏa mãn (ảnh 1)

Ta có \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {AB} + k\overrightarrow {BC} = \overrightarrow {AB} + k\overrightarrow {AC} - k\overrightarrow {AB} \)\( = k\overrightarrow {AC} + \left( {1 - k} \right)\overrightarrow {AB} \).

\(\overrightarrow {PN} = \overrightarrow {AN} - \overrightarrow {AP} = \frac{1}{3}\overrightarrow {AC} - \frac{4}{{15}}\overrightarrow {AB} \).

Để \(AM \bot PN\) thì \(\overrightarrow {AM} \cdot \overrightarrow {PN} = 0\)\( \Leftrightarrow \left( {k\overrightarrow {AC} + \left( {1 - k} \right)\overrightarrow {AB} } \right)\left( {\frac{1}{3}\overrightarrow {AC} - \frac{4}{{15}}\overrightarrow {AB} } \right) = 0\)

\( \Leftrightarrow \frac{k}{3}{\overrightarrow {AC} ^2} - \frac{{4k}}{{15}}\overrightarrow {AC} \cdot \overrightarrow {AB} + \frac{{1 - k}}{3} \cdot \overrightarrow {AB} \cdot \overrightarrow {AC} - \frac{{4\left( {1 - k} \right)}}{{15}}{\overrightarrow {AB} ^2} = 0\)

\( \Leftrightarrow \left[ {\frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}}} \right]{\overrightarrow {AC} ^2} + \left( {\frac{{1 - k}}{3} - \frac{{4k}}{{15}}} \right)\left| {\overrightarrow {AC} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos 60^\circ = 0\)\( \Leftrightarrow \left[ {\frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}}} \right]{\overrightarrow {AC} ^2} + \left( {\frac{{1 - k}}{6} - \frac{{4k}}{{30}}} \right){\left| {\overrightarrow {AC} } \right|^2} = 0\)

\( \Leftrightarrow \left( {\frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}} + \frac{{1 - k}}{6} - \frac{{4k}}{{30}}} \right){\left| {\overrightarrow {AC} } \right|^2} = 0\)

\( \Leftrightarrow \frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}} + \frac{{1 - k}}{6} - \frac{{4k}}{{30}} = 0\)\( \Leftrightarrow \frac{{3k}}{{10}} = \frac{1}{{10}}\)\( \Leftrightarrow k = \frac{1}{3}\).

Suy ra \(a = 1;b = 3\). Do đó \(2a + b = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Tọa độ của \(\overrightarrow {BC} \)\(\left( {0; - 4} \right)\).

Đúng
Sai

b) Tọa độ trung điểm của \(AB\)\(\left( {\frac{3}{2};1} \right)\).

Đúng
Sai

c) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = - 9\).

Đúng
Sai
d) Gọi \(D\left( {a;b} \right)\) là chân đường phân giác trong kẻ từ đỉnh \(A\) lên \(BC\). Khi đó \(a + b = 2,5\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AM} \).                                              

B. \(\overrightarrow {AB} + \overrightarrow {AC} = 3\overrightarrow {AG} \).  

C. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = 3\overrightarrow {GM} \).  
D. \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP