Câu hỏi:

18/12/2025 24 Lưu

Trong mặt phẳng \[Oxy\], đường tròn \[\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 9\] có tâm và bán kính là

A. \[I\left( {2;3} \right),\,\,R = 9\].           
B. \[I\left( {2; - 3} \right),\,\,R = 3\].                         
C. \[I\left( { - 3;2} \right),\,\,R = 3\].                            
D. \[I\left( { - 2;3} \right),\,\,R = 3\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường tròn tâm \[I\left( {a\,;\,b} \right)\], bán kính \[R\] có phương trình\[{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}.\]

Do đó đường tròn \[\left( C \right)\] đã cho có tâm và bán kính là \[I\left( {2; - 3} \right),\,\,R = 3.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\,\,\left( {0 < x < 10} \right)\) là chiều rộng của khu vườn.

Bác Nam dự định xây dựng (ảnh 1)

Khi đó : Diện tích phần đất trồng rau là \({x^2}\) \(\left( {{m^2}} \right)\)

Diện tích hồ nuôi cá là \(10x - {x^2}\) \(\left( {{m^2}} \right)\)

Theo giả thiết đề ra ta có bất phương trình: \(60000{x^2} + 135000\left( {10x - {x^2}} \right) \le 5400000\)

\( \Leftrightarrow  - 75000{x^2} + 1350000x - 5400000 \le 0\)\( \Leftrightarrow x \le 6\) (nhận) \( \vee \) \(x \ge 12\) (loại)\( \Rightarrow 0 < x \le 6\)

Vậy chiều rộng khu vườn lớn nhất có thể là \(6m\).

Lời giải

Ta có: \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\x = m + 3\end{array} \right.\).

\(f\left( x \right) < 0 \Leftrightarrow x \in \left( {m;m + 3} \right)\)

Do đó: \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\) \( \Leftrightarrow \) \(\left( { - 1;0} \right) \subset \left( {m;m + 3} \right)\) \( \Leftrightarrow \) \(m \le  - 1 < 0 \le m + 3\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\0 \le m + 3\end{array} \right.\).\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\ - 3 \le m\end{array} \right. \Leftrightarrow  - 3 \le m \le  - 1\)

Vậy \( - 3 \le m \le  - 1\)\( \Rightarrow m \in \left\{ { - 3;\, - 2;\, - 1} \right\}\) nên có \(3\) giá trị nguyên thỏa mãn.

Câu 3

a) Có \(15\) cách lấy một quyển sách tùy ỳ từ giá sách.
Đúng
Sai
b) Có \(9\) cách lấy một quyển sách Toán hoặc Vật lý từ giá sách.
Đúng
Sai
c) Có \(10\) cách lấy hai quyển sách gồm Toán và Hóa học từ giá sách.
Đúng
Sai
d) Có \(120\) cách lấy ba quyển sách có đủ ba môn học từ giá sách.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Tập nghiệm của bất phương trình \[f\left( x \right) < 0\]\[\mathbb{R}\backslash \left( {1;3} \right)\].
Đúng
Sai
b) Tập nghiệm của bất phương trình \[f\left( x \right) \ge 0\]\[S = \left[ {1;3} \right]\].
Đúng
Sai
c) Nghiệm \[x = 2\] là một nghiệm của bất phương trình \[f\left( x \right) > 0\].
Đúng
Sai
d) Bất phương trình \[f\left( x \right) < 2\] có tập nghiệm \[S = \mathbb{R}\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(f\left( x \right) = 2{x^3} - x + 1\).                                                             
B. \(f\left( x \right) = - 2x + 1\).  
C. \(f\left( x \right) = 2{x^2} - x + 1\).                                                             
D. \(f\left( x \right) = \sqrt {{x^2} - 2x + 3} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP