Trong các phương trình sau, phương trình nào là phương trình chính tắc của đường hypebol?
Trong các phương trình sau, phương trình nào là phương trình chính tắc của đường hypebol?
. Quảng cáo
Trả lời:
Đường hypebol có phương trình chính tắc là: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > 0,\;b > 0\).
Vậy phương trình chính tắc của đường hypebol là \(\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\x = m + 3\end{array} \right.\).
\(f\left( x \right) < 0 \Leftrightarrow x \in \left( {m;m + 3} \right)\)
Do đó: \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\) \( \Leftrightarrow \) \(\left( { - 1;0} \right) \subset \left( {m;m + 3} \right)\) \( \Leftrightarrow \) \(m \le - 1 < 0 \le m + 3\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\0 \le m + 3\end{array} \right.\).\( \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\ - 3 \le m\end{array} \right. \Leftrightarrow - 3 \le m \le - 1\)
Vậy \( - 3 \le m \le - 1\)\( \Rightarrow m \in \left\{ { - 3;\, - 2;\, - 1} \right\}\) nên có \(3\) giá trị nguyên thỏa mãn.
Lời giải
Chọn ngẫu nhiên \(3\) đỉnh từ \(32\) đỉnh ta có \(n\left( \Omega \right) = C_{32}^3 = 4960\).
Đa giác đều có \(32\) đỉnh sẽ có \(16\) đường chéo đi qua tâm của đa giác.
Mà cứ \(2\) đường chéo sẽ tạo thành \(1\) hình chữ nhật. Cứ 1 hình chữ nhật lại tạo thành \(4\) tam giác vuông. Do đó, số tam giác vuông được tạo thành là \(4C_{16}^2 = 480\).
Mặt khác, trong số \(C_{16}^2\) hình chữ nhật lại có \(8\) hình vuông. Suy ra, số tam giác vuông cân là \(4 \cdot 8 = 32\).
Gọi \(X\) là biến cố “Chọn được một tam giác vuông, không cân”\( \Rightarrow n\left( X \right) = 480 - 32 = 448\).
Xác suất của biến cố \(X\) là:
\(P\left( X \right) = \frac{{n\left( X \right)}}{{n\left( \Omega \right)}} = \frac{{448}}{{4960}} = \frac{{14}}{{155}} \Rightarrow \left\{ \begin{array}{l}a = 14\\b = 155\end{array} \right. \Rightarrow T = b - 3a = 155 - 3.14 = 113\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
