Câu hỏi:

18/12/2025 4 Lưu

Lớp 10A có \(45\) học sinh, giáo viên chủ nhiệm cần chọn lần lượt \(5\) học sinh trồng năm cây khác nhau trong buổi lễ phát động trồng cây mùa xuân. Hỏi giáo viên có bao nhiêu cách chọn?

A. \(5!\).                    
B. \(C_{45}^5\).      
C. \(A_{45}^5\).            
D. \(45\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Mỗi cách chọn lần lượt \(5\) học sinh trồng 5 cây khác nhau là một chỉnh hợp chập \(5\) của \(45\) phần tử nên số cách chọn thỏa mãn là \(A_{45}^5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\x = m + 3\end{array} \right.\).

\(f\left( x \right) < 0 \Leftrightarrow x \in \left( {m;m + 3} \right)\)

Do đó: \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\) \( \Leftrightarrow \) \(\left( { - 1;0} \right) \subset \left( {m;m + 3} \right)\) \( \Leftrightarrow \) \(m \le  - 1 < 0 \le m + 3\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\0 \le m + 3\end{array} \right.\).\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\ - 3 \le m\end{array} \right. \Leftrightarrow  - 3 \le m \le  - 1\)

Vậy \( - 3 \le m \le  - 1\)\( \Rightarrow m \in \left\{ { - 3;\, - 2;\, - 1} \right\}\) nên có \(3\) giá trị nguyên thỏa mãn.

Lời giải

Chọn ngẫu nhiên \(3\) đỉnh từ \(32\) đỉnh ta có \(n\left( \Omega  \right) = C_{32}^3 = 4960\).

Đa giác đều có \(32\) đỉnh sẽ có \(16\) đường chéo đi qua tâm của đa giác.

Mà cứ \(2\) đường chéo sẽ tạo thành \(1\) hình chữ nhật. Cứ 1 hình chữ nhật lại tạo thành \(4\) tam giác vuông. Do đó, số tam giác vuông được tạo thành là \(4C_{16}^2 = 480\).

Mặt khác, trong số \(C_{16}^2\) hình chữ nhật lại có \(8\) hình vuông. Suy ra, số tam giác vuông cân là \(4 \cdot 8 = 32\).

Gọi \(X\) là biến cố “Chọn được một tam giác vuông, không cân”\( \Rightarrow n\left( X \right) = 480 - 32 = 448\).

Xác suất của biến cố \(X\) là:

\(P\left( X \right) = \frac{{n\left( X \right)}}{{n\left( \Omega  \right)}} = \frac{{448}}{{4960}} = \frac{{14}}{{155}} \Rightarrow \left\{ \begin{array}{l}a = 14\\b = 155\end{array} \right. \Rightarrow T = b - 3a = 155 - 3.14 = 113\).

Câu 5

A. \[ - x + 2y + 7 = 0\].                              
B. \[2x + y + 8 = 0\].                       
C. \[x - 2y - 9 = 0\]. 
D. \[x - 2y + 9 = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overline B \) là biến cố: “Số được chọn chia hết cho \(6\).
B. \(\overline B \) là biến cố: “Số được chọn không chia hết cho \(6\).
C. \(\overline B \) là biến cố: “Số được chọn chia hết cho \(3\).
D. \(\overline B \) là biến cố: “Số được chọn không chia hết cho \(3\)”.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Tập nghiệm của bất phương trình \[f\left( x \right) < 0\]\[\mathbb{R}\backslash \left( {1;3} \right)\].
Đúng
Sai
b) Tập nghiệm của bất phương trình \[f\left( x \right) \ge 0\]\[S = \left[ {1;3} \right]\].
Đúng
Sai
c) Nghiệm \[x = 2\] là một nghiệm của bất phương trình \[f\left( x \right) > 0\].
Đúng
Sai
d) Bất phương trình \[f\left( x \right) < 2\] có tập nghiệm \[S = \mathbb{R}\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP