Câu hỏi:

18/12/2025 6 Lưu

Một hộp có \(12\) quả cầu bao gồm \(4\)quả màu xanh, \(3\) quả màu đỏ, \(5\) quả màu vàng. Lấy ra 4 quả cầu. Tính xác suất sao cho trong \(4\) quả cầu lấy ra có ít nhất một quả cầu màu đỏ.

A. \(\frac{{99}}{{495}}\).                          
B. \(\frac{{13}}{{55}}\).                                 
C. \(\frac{{261}}{{495}}\).                             
D. \(\frac{{41}}{{55}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số phần tử không gian mẫu là \(n\left( \Omega  \right) = C_{12}^4\).

Gọi \(A\) là biến cố: “\(4\) quả cầu lấy ra có ít nhất một quả cầu màu đỏ”.

Khi đó \[\overline {\,A\,} \] là biến cố: “\(4\) quả cầu lấy ra không quả cầu nào màu đỏ” \( \Rightarrow n\left( A \right) = C_9^4\).

Vậy xác suất cần tìm là: \[P\left( A \right) = 1 - P\left( {\overline {\,A\,} } \right) = 1 - \frac{{n\left( {\overline {\,A\,} } \right)}}{{n\left( \Omega  \right)}} = 1 - \frac{{C_9^4}}{{C_{12}^4}} = \frac{{41}}{{55}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\x = m + 3\end{array} \right.\).

\(f\left( x \right) < 0 \Leftrightarrow x \in \left( {m;m + 3} \right)\)

Do đó: \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\) \( \Leftrightarrow \) \(\left( { - 1;0} \right) \subset \left( {m;m + 3} \right)\) \( \Leftrightarrow \) \(m \le  - 1 < 0 \le m + 3\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\0 \le m + 3\end{array} \right.\).\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\ - 3 \le m\end{array} \right. \Leftrightarrow  - 3 \le m \le  - 1\)

Vậy \( - 3 \le m \le  - 1\)\( \Rightarrow m \in \left\{ { - 3;\, - 2;\, - 1} \right\}\) nên có \(3\) giá trị nguyên thỏa mãn.

Lời giải

Chọn ngẫu nhiên \(3\) đỉnh từ \(32\) đỉnh ta có \(n\left( \Omega  \right) = C_{32}^3 = 4960\).

Đa giác đều có \(32\) đỉnh sẽ có \(16\) đường chéo đi qua tâm của đa giác.

Mà cứ \(2\) đường chéo sẽ tạo thành \(1\) hình chữ nhật. Cứ 1 hình chữ nhật lại tạo thành \(4\) tam giác vuông. Do đó, số tam giác vuông được tạo thành là \(4C_{16}^2 = 480\).

Mặt khác, trong số \(C_{16}^2\) hình chữ nhật lại có \(8\) hình vuông. Suy ra, số tam giác vuông cân là \(4 \cdot 8 = 32\).

Gọi \(X\) là biến cố “Chọn được một tam giác vuông, không cân”\( \Rightarrow n\left( X \right) = 480 - 32 = 448\).

Xác suất của biến cố \(X\) là:

\(P\left( X \right) = \frac{{n\left( X \right)}}{{n\left( \Omega  \right)}} = \frac{{448}}{{4960}} = \frac{{14}}{{155}} \Rightarrow \left\{ \begin{array}{l}a = 14\\b = 155\end{array} \right. \Rightarrow T = b - 3a = 155 - 3.14 = 113\).

Câu 3

A. \(\overline B \) là biến cố: “Số được chọn chia hết cho \(6\).
B. \(\overline B \) là biến cố: “Số được chọn không chia hết cho \(6\).
C. \(\overline B \) là biến cố: “Số được chọn chia hết cho \(3\).
D. \(\overline B \) là biến cố: “Số được chọn không chia hết cho \(3\)”.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[ - x + 2y + 7 = 0\].                              
B. \[2x + y + 8 = 0\].                       
C. \[x - 2y - 9 = 0\]. 
D. \[x - 2y + 9 = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Tập nghiệm của bất phương trình \[f\left( x \right) < 0\]\[\mathbb{R}\backslash \left( {1;3} \right)\].
Đúng
Sai
b) Tập nghiệm của bất phương trình \[f\left( x \right) \ge 0\]\[S = \left[ {1;3} \right]\].
Đúng
Sai
c) Nghiệm \[x = 2\] là một nghiệm của bất phương trình \[f\left( x \right) > 0\].
Đúng
Sai
d) Bất phương trình \[f\left( x \right) < 2\] có tập nghiệm \[S = \mathbb{R}\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP