Câu hỏi:

18/12/2025 29 Lưu

Lớp 11A có \[7\] học sinh nữ và \[13\] học sinh nam. Cô chủ nhiệm chọn ra \[5\] bạn để tham gia văn nghệ.
Hãy xác định định đúng – sai của các khẳng định sau:

a) Xác suất để cô chủ nhiệm chọn được \[5\] học sinh nữ là \[\frac{{21}}{{15504}}\].
Đúng
Sai
b) Xác suất để cô chủ nhiệm chọn được đúng \[3\] học sinh nam là \[\frac{{C_{13}^3.C_7^2}}{{C_{20}^5}}\].
Đúng
Sai
c) Xác suất để cô chủ nhiệm chọn được ít nhất \[1\]học sinh nữ là \[\frac{{429}}{{5168}}\].
Đúng
Sai
d) Xác suất để cô chủ nhiệm số học sinh nữ nhiều hơn số học sinh nam là \[\frac{{1603}}{{7752}}\].
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Không gian mẫu là \[C_{20}^5 = 15504\].

a) Đúng: Số cách chọn \[5\] học sinh nữ từ \[7\] học sinh nữ là \[C_7^5 = 21\].

Xác suất để cô chủ nhiệm chọn được \[5\] học sinh nữ là \[\frac{{21}}{{15504}} = \frac{7}{{5168}}\].

b) Đúng: Để chọn đúng \[3\] học sinh nam thì cô chủ nhiệm sẽ chọn \[3\] nam và \[2\] nữ.

Xác suất để cô chủ nhiệm chọn được \[3\] nam và \[2\] nữ là \[\frac{{C_{13}^3.C_7^2}}{{15504}} = \frac{{1001}}{{2584}}\].

c) Sai: Phần bù của biến cố “chọn được ít nhất \[1\] học sinh nữ là chọn được \[5\] học sinh nam”

Xác suất để cô chủ nhiệm chọn được ít nhất \[1\] học sinh nữ là \[\frac{{C_{20}^5 - C_{13}^5}}{{C_{20}^5}} = \frac{{4739}}{{5168}}\].

d) Đúng : Ta chia làm 3 trường hợp

Trường hợp 1: \[3\] nữ \[2\] nam

Trường hợp 2: \[4\] nữ \[1\] nam

Trường hợp 3: \[5\] nữ

Xác suất để cô chủ nhiệm số học sinh nữ nhiều hơn số học sinh nam là

\[\frac{{C_7^3.C_{13}^2 + C_7^4.C_{13}^1 + C_7^5}}{{C_{20}^5}} = \frac{{1603}}{{7752}}\].

Trường hợp 2: Với \(3A =  - 4B\), chọn \(A = 4 \Rightarrow B =  - 3\).

\( \Rightarrow \) Phương trình đường thẳng \({\Delta _2}:4x - 3y - 18 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\,\,\left( {0 < x < 10} \right)\) là chiều rộng của khu vườn.

Bác Nam dự định xây dựng (ảnh 1)

Khi đó : Diện tích phần đất trồng rau là \({x^2}\) \(\left( {{m^2}} \right)\)

Diện tích hồ nuôi cá là \(10x - {x^2}\) \(\left( {{m^2}} \right)\)

Theo giả thiết đề ra ta có bất phương trình: \(60000{x^2} + 135000\left( {10x - {x^2}} \right) \le 5400000\)

\( \Leftrightarrow  - 75000{x^2} + 1350000x - 5400000 \le 0\)\( \Leftrightarrow x \le 6\) (nhận) \( \vee \) \(x \ge 12\) (loại)\( \Rightarrow 0 < x \le 6\)

Vậy chiều rộng khu vườn lớn nhất có thể là \(6m\).

Lời giải

Ta có: \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\x = m + 3\end{array} \right.\).

\(f\left( x \right) < 0 \Leftrightarrow x \in \left( {m;m + 3} \right)\)

Do đó: \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\) \( \Leftrightarrow \) \(\left( { - 1;0} \right) \subset \left( {m;m + 3} \right)\) \( \Leftrightarrow \) \(m \le  - 1 < 0 \le m + 3\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\0 \le m + 3\end{array} \right.\).\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\ - 3 \le m\end{array} \right. \Leftrightarrow  - 3 \le m \le  - 1\)

Vậy \( - 3 \le m \le  - 1\)\( \Rightarrow m \in \left\{ { - 3;\, - 2;\, - 1} \right\}\) nên có \(3\) giá trị nguyên thỏa mãn.

Câu 3

a) Có \(15\) cách lấy một quyển sách tùy ỳ từ giá sách.
Đúng
Sai
b) Có \(9\) cách lấy một quyển sách Toán hoặc Vật lý từ giá sách.
Đúng
Sai
c) Có \(10\) cách lấy hai quyển sách gồm Toán và Hóa học từ giá sách.
Đúng
Sai
d) Có \(120\) cách lấy ba quyển sách có đủ ba môn học từ giá sách.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Tập nghiệm của bất phương trình \[f\left( x \right) < 0\]\[\mathbb{R}\backslash \left( {1;3} \right)\].
Đúng
Sai
b) Tập nghiệm của bất phương trình \[f\left( x \right) \ge 0\]\[S = \left[ {1;3} \right]\].
Đúng
Sai
c) Nghiệm \[x = 2\] là một nghiệm của bất phương trình \[f\left( x \right) > 0\].
Đúng
Sai
d) Bất phương trình \[f\left( x \right) < 2\] có tập nghiệm \[S = \mathbb{R}\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(f\left( x \right) = 2{x^3} - x + 1\).                                                             
B. \(f\left( x \right) = - 2x + 1\).  
C. \(f\left( x \right) = 2{x^2} - x + 1\).                                                             
D. \(f\left( x \right) = \sqrt {{x^2} - 2x + 3} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP