Lớp 11A có \[7\] học sinh nữ và \[13\] học sinh nam. Cô chủ nhiệm chọn ra \[5\] bạn để tham gia văn nghệ.
Hãy xác định định đúng – sai của các khẳng định sau:
Quảng cáo
Trả lời:
Không gian mẫu là \[C_{20}^5 = 15504\].
a) Đúng: Số cách chọn \[5\] học sinh nữ từ \[7\] học sinh nữ là \[C_7^5 = 21\].
Xác suất để cô chủ nhiệm chọn được \[5\] học sinh nữ là \[\frac{{21}}{{15504}} = \frac{7}{{5168}}\].
b) Đúng: Để chọn đúng \[3\] học sinh nam thì cô chủ nhiệm sẽ chọn \[3\] nam và \[2\] nữ.
Xác suất để cô chủ nhiệm chọn được \[3\] nam và \[2\] nữ là \[\frac{{C_{13}^3.C_7^2}}{{15504}} = \frac{{1001}}{{2584}}\].
c) Sai: Phần bù của biến cố “chọn được ít nhất \[1\] học sinh nữ là chọn được \[5\] học sinh nam”
Xác suất để cô chủ nhiệm chọn được ít nhất \[1\] học sinh nữ là \[\frac{{C_{20}^5 - C_{13}^5}}{{C_{20}^5}} = \frac{{4739}}{{5168}}\].
d) Đúng : Ta chia làm 3 trường hợp
Trường hợp 1: \[3\] nữ \[2\] nam
Trường hợp 2: \[4\] nữ \[1\] nam
Trường hợp 3: \[5\] nữ
Xác suất để cô chủ nhiệm số học sinh nữ nhiều hơn số học sinh nam là
\[\frac{{C_7^3.C_{13}^2 + C_7^4.C_{13}^1 + C_7^5}}{{C_{20}^5}} = \frac{{1603}}{{7752}}\].
Trường hợp 2: Với \(3A = - 4B\), chọn \(A = 4 \Rightarrow B = - 3\).
\( \Rightarrow \) Phương trình đường thẳng \({\Delta _2}:4x - 3y - 18 = 0\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\,\,\left( {0 < x < 10} \right)\) là chiều rộng của khu vườn.

Khi đó : Diện tích phần đất trồng rau là \({x^2}\) \(\left( {{m^2}} \right)\)
Diện tích hồ nuôi cá là \(10x - {x^2}\) \(\left( {{m^2}} \right)\)
Theo giả thiết đề ra ta có bất phương trình: \(60000{x^2} + 135000\left( {10x - {x^2}} \right) \le 5400000\)
\( \Leftrightarrow - 75000{x^2} + 1350000x - 5400000 \le 0\)\( \Leftrightarrow x \le 6\) (nhận) \( \vee \) \(x \ge 12\) (loại)\( \Rightarrow 0 < x \le 6\)
Vậy chiều rộng khu vườn lớn nhất có thể là \(6m\).
Lời giải
Ta có: \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\x = m + 3\end{array} \right.\).
\(f\left( x \right) < 0 \Leftrightarrow x \in \left( {m;m + 3} \right)\)
Do đó: \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\) \( \Leftrightarrow \) \(\left( { - 1;0} \right) \subset \left( {m;m + 3} \right)\) \( \Leftrightarrow \) \(m \le - 1 < 0 \le m + 3\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\0 \le m + 3\end{array} \right.\).\( \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\ - 3 \le m\end{array} \right. \Leftrightarrow - 3 \le m \le - 1\)
Vậy \( - 3 \le m \le - 1\)\( \Rightarrow m \in \left\{ { - 3;\, - 2;\, - 1} \right\}\) nên có \(3\) giá trị nguyên thỏa mãn.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
