Câu hỏi:

18/12/2025 10 Lưu

Trong mặt phẳng với hệ tọa độ \[Oxy\],cho tam giác \(ABC\) nội tiếp đường tròn tâm \(I\left( {1;0} \right)\), bán kính \(R = 5\). Chân các đường cao kẻ từ \(B,C\) lần lượt là \(H\left( {3;1} \right),K\left( {0; - 3} \right)\). Tính bình phương bán kính đường tròn ngoại tiếp tứ giác \(BCHK\), biết rằng điểm A có tung độ dương.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vậy đường tròn ngoại tiếp tứ giác (ảnh 1)

Đường tròn \(\left( C \right)\) ngoại tiếp tam giác \(ABC\)có phương trình là: \({\left( {x - 1} \right)^2} + {y^2} = 25\).

Tứ giác\(BCHK\) nội tiếp đường tròn đường kính \(BC\) (vì \(\widehat {BHC} = \widehat {BKC} = {90^0}\)).

Dựng tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A.\) Ta có \[\widehat {CAx} = \widehat {CBA} = \] sđ \(\left( 1 \right)\)

Mặt khác: \[\widehat {CBA} = \widehat {AHK}\] (Vì tứ giác \(BCHK\) nội tiếp) \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \[\widehat {CAx} = \widehat {AHK}\]. Vậy \[HK//Ax\], nên \[HK \bot AI\].

Đường thẳng \(AI\) đi qua \(I\) và nhận \(\overrightarrow {HK} \) làm véc tơ pháp tuyến nên có phương trình là:

\(3\left( {x - 1} \right) + 4y = 0 \Leftrightarrow 3x + 4y - 3 = 0\).

Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ \begin{array}{l}3x + 4y - 3 = 0\\{\left( {x - 1} \right)^2} + {y^2} = 25\end{array} \right. \Rightarrow A\left( { - 3;3} \right)\) (vì \(A\)có tung độ dương).

Đường thẳng \(AB\) đi qua \(A\) và \(K\) nên có phương trình: \(2x + y + 3 = 0\).

Tọa độ điểm \(B\) là nghiệm của hệ \[\left\{ \begin{array}{l}3x + y + 3 = 0\\{\left( {x - 1} \right)^2} + {y^2} = 25\end{array} \right. \Rightarrow B\left( {1; - 5} \right)\] (vì \(B\) khác \(A\)).

Đường thẳng \(AC\)đi qua \(A\) và \(H\) nên có phương trình: \(x + 3y - 6 = 0\).

Tọa độ điểm \(C\) là nghiệm của hệ \[\left\{ \begin{array}{l}x + 3y - 6 = 0\\{\left( {x - 1} \right)^2} + {y^2} = 25\end{array} \right. \Rightarrow C\left( {6;0} \right)\] (vì \(C\) khác\(A\)).

Vậy đường tròn ngoại tiếp tứ giác BCHK có đường kính \(BC\) bằng \(\frac{{25}}{2} = 12,5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\x = m + 3\end{array} \right.\).

\(f\left( x \right) < 0 \Leftrightarrow x \in \left( {m;m + 3} \right)\)

Do đó: \(f\left( x \right) < 0,\forall x \in \left( { - 1;0} \right)\) \( \Leftrightarrow \) \(\left( { - 1;0} \right) \subset \left( {m;m + 3} \right)\) \( \Leftrightarrow \) \(m \le  - 1 < 0 \le m + 3\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\0 \le m + 3\end{array} \right.\).\( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 1\\ - 3 \le m\end{array} \right. \Leftrightarrow  - 3 \le m \le  - 1\)

Vậy \( - 3 \le m \le  - 1\)\( \Rightarrow m \in \left\{ { - 3;\, - 2;\, - 1} \right\}\) nên có \(3\) giá trị nguyên thỏa mãn.

Lời giải

Chọn ngẫu nhiên \(3\) đỉnh từ \(32\) đỉnh ta có \(n\left( \Omega  \right) = C_{32}^3 = 4960\).

Đa giác đều có \(32\) đỉnh sẽ có \(16\) đường chéo đi qua tâm của đa giác.

Mà cứ \(2\) đường chéo sẽ tạo thành \(1\) hình chữ nhật. Cứ 1 hình chữ nhật lại tạo thành \(4\) tam giác vuông. Do đó, số tam giác vuông được tạo thành là \(4C_{16}^2 = 480\).

Mặt khác, trong số \(C_{16}^2\) hình chữ nhật lại có \(8\) hình vuông. Suy ra, số tam giác vuông cân là \(4 \cdot 8 = 32\).

Gọi \(X\) là biến cố “Chọn được một tam giác vuông, không cân”\( \Rightarrow n\left( X \right) = 480 - 32 = 448\).

Xác suất của biến cố \(X\) là:

\(P\left( X \right) = \frac{{n\left( X \right)}}{{n\left( \Omega  \right)}} = \frac{{448}}{{4960}} = \frac{{14}}{{155}} \Rightarrow \left\{ \begin{array}{l}a = 14\\b = 155\end{array} \right. \Rightarrow T = b - 3a = 155 - 3.14 = 113\).

Câu 4

A. \[ - x + 2y + 7 = 0\].                              
B. \[2x + y + 8 = 0\].                       
C. \[x - 2y - 9 = 0\]. 
D. \[x - 2y + 9 = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overline B \) là biến cố: “Số được chọn chia hết cho \(6\).
B. \(\overline B \) là biến cố: “Số được chọn không chia hết cho \(6\).
C. \(\overline B \) là biến cố: “Số được chọn chia hết cho \(3\).
D. \(\overline B \) là biến cố: “Số được chọn không chia hết cho \(3\)”.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Tập nghiệm của bất phương trình \[f\left( x \right) < 0\]\[\mathbb{R}\backslash \left( {1;3} \right)\].
Đúng
Sai
b) Tập nghiệm của bất phương trình \[f\left( x \right) \ge 0\]\[S = \left[ {1;3} \right]\].
Đúng
Sai
c) Nghiệm \[x = 2\] là một nghiệm của bất phương trình \[f\left( x \right) > 0\].
Đúng
Sai
d) Bất phương trình \[f\left( x \right) < 2\] có tập nghiệm \[S = \mathbb{R}\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP