Câu hỏi:

18/12/2025 276 Lưu

Cho tam giác \(ABC\) vuông tại \(A\), \(AB = 3,AC = 4\). Gọi \(M\) là trung điểm \(BC\).

a) \(\overrightarrow {CA} - \overrightarrow {CB} = \overrightarrow {AB} \).

Đúng
Sai

b) \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AM} = 3\overrightarrow {AM} \).

Đúng
Sai

c) \(\overrightarrow {BA} \cdot \overrightarrow {BC} = 9\).

Đúng
Sai
d) Độ dài vectơ \(\overrightarrow u = 2\overrightarrow {AB} + \overrightarrow {AC} \) bằng \(2\sqrt {13} \).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\overrightarrow {CA} - \overrightarrow {CB} = \overrightarrow {BA} \).

b) \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AM} = 2\overrightarrow {AM} + \overrightarrow {AM} = 3\overrightarrow {AM} \).

c) Xét \(\Delta ABC\) vuông tại \(A,\)\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{3^2} + {4^2}} = 5\); \(\cos B = \frac{{AB}}{{BC}} = \frac{3}{5}\)

Khi đó \(\overrightarrow {BA} \cdot \overrightarrow {BC} = \left| {\overrightarrow {BA} } \right| \cdot \left| {\overrightarrow {BC} } \right| \cdot \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = 3 \cdot 5 \cdot \frac{3}{5} = 9\).

d) Ta có \({\left( {2\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = 4{\overrightarrow {AB} ^2} + 4\overrightarrow {AB} \cdot \overrightarrow {AC} + {\overrightarrow {AC} ^2}\)\( = 4{\overrightarrow {AB} ^2} + {\overrightarrow {AC} ^2}\)\( = 4 \cdot {3^2} + {4^2} = 52\).

Suy ra \(\left| {\overrightarrow u } \right| = \sqrt {52} = 2\sqrt {13} \).

Đáp án: a) Sai;    b) Đúng;     c) Đúng;     d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác đều \(ABC\) và các điểm \(M,N,P\) thỏa mãn (ảnh 1)

Ta có \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {AB} + k\overrightarrow {BC} = \overrightarrow {AB} + k\overrightarrow {AC} - k\overrightarrow {AB} \)\( = k\overrightarrow {AC} + \left( {1 - k} \right)\overrightarrow {AB} \).

\(\overrightarrow {PN} = \overrightarrow {AN} - \overrightarrow {AP} = \frac{1}{3}\overrightarrow {AC} - \frac{4}{{15}}\overrightarrow {AB} \).

Để \(AM \bot PN\) thì \(\overrightarrow {AM} \cdot \overrightarrow {PN} = 0\)\( \Leftrightarrow \left( {k\overrightarrow {AC} + \left( {1 - k} \right)\overrightarrow {AB} } \right)\left( {\frac{1}{3}\overrightarrow {AC} - \frac{4}{{15}}\overrightarrow {AB} } \right) = 0\)

\( \Leftrightarrow \frac{k}{3}{\overrightarrow {AC} ^2} - \frac{{4k}}{{15}}\overrightarrow {AC} \cdot \overrightarrow {AB} + \frac{{1 - k}}{3} \cdot \overrightarrow {AB} \cdot \overrightarrow {AC} - \frac{{4\left( {1 - k} \right)}}{{15}}{\overrightarrow {AB} ^2} = 0\)

\( \Leftrightarrow \left[ {\frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}}} \right]{\overrightarrow {AC} ^2} + \left( {\frac{{1 - k}}{3} - \frac{{4k}}{{15}}} \right)\left| {\overrightarrow {AC} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos 60^\circ = 0\)\( \Leftrightarrow \left[ {\frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}}} \right]{\overrightarrow {AC} ^2} + \left( {\frac{{1 - k}}{6} - \frac{{4k}}{{30}}} \right){\left| {\overrightarrow {AC} } \right|^2} = 0\)

\( \Leftrightarrow \left( {\frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}} + \frac{{1 - k}}{6} - \frac{{4k}}{{30}}} \right){\left| {\overrightarrow {AC} } \right|^2} = 0\)

\( \Leftrightarrow \frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}} + \frac{{1 - k}}{6} - \frac{{4k}}{{30}} = 0\)\( \Leftrightarrow \frac{{3k}}{{10}} = \frac{1}{{10}}\)\( \Leftrightarrow k = \frac{1}{3}\).

Suy ra \(a = 1;b = 3\). Do đó \(2a + b = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Tọa độ của \(\overrightarrow {BC} \)\(\left( {0; - 4} \right)\).

Đúng
Sai

b) Tọa độ trung điểm của \(AB\)\(\left( {\frac{3}{2};1} \right)\).

Đúng
Sai

c) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = - 9\).

Đúng
Sai
d) Gọi \(D\left( {a;b} \right)\) là chân đường phân giác trong kẻ từ đỉnh \(A\) lên \(BC\). Khi đó \(a + b = 2,5\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AM} \).                                              

B. \(\overrightarrow {AB} + \overrightarrow {AC} = 3\overrightarrow {AG} \).  

C. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = 3\overrightarrow {GM} \).  
D. \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP