Trong mặt phẳng tọa độ \(Oxy\), cho \(\Delta ABC\) biết \(A\left( { - 3;4} \right),B\left( { - 3;1} \right),C\left( {1;2} \right)\).
Trong mặt phẳng tọa độ \(Oxy\), cho \(\Delta ABC\) biết \(A\left( { - 3;4} \right),B\left( { - 3;1} \right),C\left( {1;2} \right)\).
a) \(\overrightarrow {AB} = \left( { - 6;5} \right)\).
b) Hình chiếu vuông góc kẻ từ \(A\) xuống \(BC\) là \(H\left( { - 1; - 4} \right)\).
c) \(\cos \widehat {BAC} = - \frac{{\sqrt 5 }}{5}\).
Quảng cáo
Trả lời:
a) \(\overrightarrow {AB} = \left( {0; - 3} \right)\).
b) Gọi \(H\left( {x;y} \right)\). Ta có \(\overrightarrow {AH} = \left( {x + 3;y - 4} \right),\overrightarrow {BC} = \left( {4;1} \right),\overrightarrow {BH} = \left( {x + 3;y - 1} \right)\).
Vì \(H\) là hình chiếu vuông góc kẻ từ \(A\) xuống \(BC\) nên \(AH \bot BC\) và \(B,H,C\) thẳng hàng.
Khi đó ta có hệ \(\left\{ \begin{array}{l}\overrightarrow {AH} \cdot \overrightarrow {BC} = 0\\\overrightarrow {BH} = k\overrightarrow {BC} \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}4\left( {x + 3} \right) + \left( {y - 4} \right) = 0\\x + 3 = 4k\\y - 1 = k\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{{39}}{{17}}\\y = \frac{{20}}{{17}}\end{array} \right.\)\( \Rightarrow H\left( { - \frac{{39}}{{17}};\frac{{20}}{{17}}} \right)\).
c) Ta có \(\overrightarrow {AC} = \left( {4; - 2} \right)\)
\(\cos \widehat {BAC} = \frac{{\overrightarrow {AB} \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right|}}\)\( = \frac{{0 \cdot 4 + \left( { - 3} \right) \cdot \left( { - 2} \right)}}{{\sqrt {{0^2} + {{\left( { - 3} \right)}^2}} \cdot \sqrt {{4^2} + {{\left( { - 2} \right)}^2}} }} = \frac{6}{{6\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\).
d) Gọi \(M\left( {x;y} \right)\). Khi đó \(\overrightarrow {MA} = \left( { - 3 - x;4 - y} \right)\).
Khi đó \(\overrightarrow {MA} + 2\overrightarrow {AB} - \overrightarrow {AC} = \left( { - 7 - x; - y} \right)\).
Vì \(\overrightarrow {MA} + 2\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow 0 \) nên \(\left\{ \begin{array}{l} - 7 - x = 0\\ - y = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - 7\\y = 0\end{array} \right.\)\( \Rightarrow M\left( { - 7;0} \right)\).
Đáp án: a) Sai; b) Sai; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo đề ta có hệ phương trình \(\left\{ \begin{array}{l}{a^2} + {b^2} = {\left( {8 - a} \right)^2} + {\left( {4 - b} \right)^2}\\{a^2} + {b^2} = {\left( {7 - a} \right)^2} + {\left( {7 - b} \right)^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}16a + 8b = 80\\14a + 14b = 98\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 4\end{array} \right.\).
Khi đó \(a + b = 7\).
Lời giải

Có \(\overrightarrow {MB} \) và \(\overrightarrow {MC} \) ngược hướng và \(MB = 4MC\) nên \(\overrightarrow {MB} = - 4\overrightarrow {MC} \). Suy ra \(\overrightarrow {BM} = \frac{4}{5}\overrightarrow {BC} \).
Khi đó \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {AB} + \frac{4}{5}\overrightarrow {BC} = \overrightarrow {AB} + \frac{4}{5}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)\)\( = \frac{1}{5}\overrightarrow {AB} + \frac{4}{5}\overrightarrow {AC} \).
Suy ra \(m = \frac{1}{5};n = \frac{4}{5}\). Vậy \(6m + n = 2\).
Câu 3
A. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AM} \).
B. \(\overrightarrow {AB} + \overrightarrow {AC} = 3\overrightarrow {AG} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) bằng \(30^\circ \).
b) \(\overrightarrow {AC} \cdot \overrightarrow {BD} = 0\).
c) \(\overrightarrow {AE} \cdot \overrightarrow {CD} = \overrightarrow {AD} \cdot \overrightarrow {CD} + \overrightarrow {DE} \cdot \overrightarrow {CD} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) \(\overrightarrow {AC} + \overrightarrow {CB} = \overrightarrow {AB} \).
b) Độ dài của vectơ \(\overrightarrow {BC} + \overrightarrow {CA} + \overrightarrow {AB} \) bằng 6.
c) Độ dài của vectơ \(\overrightarrow {BA} - \overrightarrow {BC} \) bằng 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
