Câu hỏi:

18/12/2025 4 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho \(\Delta ABC\) biết \(A\left( { - 3;4} \right),B\left( { - 3;1} \right),C\left( {1;2} \right)\).

a) \(\overrightarrow {AB} = \left( { - 6;5} \right)\).

Đúng
Sai

b) Hình chiếu vuông góc kẻ từ \(A\) xuống \(BC\)\(H\left( { - 1; - 4} \right)\).

Đúng
Sai

c) \(\cos \widehat {BAC} = - \frac{{\sqrt 5 }}{5}\).

Đúng
Sai
d) Tọa độ điểm \(M\) thỏa mãn \(\overrightarrow {MA} + 2\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow 0 \)\(\left( { - 7;0} \right)\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\overrightarrow {AB} = \left( {0; - 3} \right)\).

b) Gọi \(H\left( {x;y} \right)\). Ta có \(\overrightarrow {AH} = \left( {x + 3;y - 4} \right),\overrightarrow {BC} = \left( {4;1} \right),\overrightarrow {BH} = \left( {x + 3;y - 1} \right)\).

\(H\) là hình chiếu vuông góc kẻ từ \(A\) xuống \(BC\) nên \(AH \bot BC\)\(B,H,C\) thẳng hàng.

Khi đó ta có hệ \(\left\{ \begin{array}{l}\overrightarrow {AH} \cdot \overrightarrow {BC} = 0\\\overrightarrow {BH} = k\overrightarrow {BC} \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}4\left( {x + 3} \right) + \left( {y - 4} \right) = 0\\x + 3 = 4k\\y - 1 = k\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{{39}}{{17}}\\y = \frac{{20}}{{17}}\end{array} \right.\)\( \Rightarrow H\left( { - \frac{{39}}{{17}};\frac{{20}}{{17}}} \right)\).

c) Ta có \(\overrightarrow {AC} = \left( {4; - 2} \right)\)

\(\cos \widehat {BAC} = \frac{{\overrightarrow {AB} \cdot \overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right|}}\)\( = \frac{{0 \cdot 4 + \left( { - 3} \right) \cdot \left( { - 2} \right)}}{{\sqrt {{0^2} + {{\left( { - 3} \right)}^2}} \cdot \sqrt {{4^2} + {{\left( { - 2} \right)}^2}} }} = \frac{6}{{6\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\).

d) Gọi \(M\left( {x;y} \right)\). Khi đó \(\overrightarrow {MA} = \left( { - 3 - x;4 - y} \right)\).

Khi đó \(\overrightarrow {MA} + 2\overrightarrow {AB} - \overrightarrow {AC} = \left( { - 7 - x; - y} \right)\).

\(\overrightarrow {MA} + 2\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow 0 \) nên \(\left\{ \begin{array}{l} - 7 - x = 0\\ - y = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - 7\\y = 0\end{array} \right.\)\( \Rightarrow M\left( { - 7;0} \right)\).

Đáp án: a) Sai;    b) Sai;     c) Sai;     d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\). Gọi \(M\) là điểm trên cạnh \(BC\) sao cho \(MB = 4MC\) (ảnh 1)

\(\overrightarrow {MB} \)\(\overrightarrow {MC} \) ngược hướng và \(MB = 4MC\) nên \(\overrightarrow {MB} = - 4\overrightarrow {MC} \). Suy ra \(\overrightarrow {BM} = \frac{4}{5}\overrightarrow {BC} \).

Khi đó \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {AB} + \frac{4}{5}\overrightarrow {BC} = \overrightarrow {AB}  + \frac{4}{5}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)\)\( = \frac{1}{5}\overrightarrow {AB} + \frac{4}{5}\overrightarrow {AC} \).

Suy ra \(m = \frac{1}{5};n = \frac{4}{5}\). Vậy \(6m + n = 2\).

Câu 3

A. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AM} \).                                              

B. \(\overrightarrow {AB} + \overrightarrow {AC} = 3\overrightarrow {AG} \).  

C. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = 3\overrightarrow {GM} \).  
D. \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Góc giữa hai vectơ \(\overrightarrow {AB} \)\(\overrightarrow {AC} \) bằng \(30^\circ \).

Đúng
Sai

b) \(\overrightarrow {AC} \cdot \overrightarrow {BD} = 0\).

Đúng
Sai

c) \(\overrightarrow {AE} \cdot \overrightarrow {CD} = \overrightarrow {AD} \cdot \overrightarrow {CD} + \overrightarrow {DE} \cdot \overrightarrow {CD} \).

Đúng
Sai
d) \(\overrightarrow {AD} \cdot \overrightarrow {AC} = 144\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) \(\overrightarrow {AC} + \overrightarrow {CB} = \overrightarrow {AB} \).

Đúng
Sai

b) Độ dài của vectơ \(\overrightarrow {BC} + \overrightarrow {CA} + \overrightarrow {AB} \) bằng 6.

Đúng
Sai

c) Độ dài của vectơ \(\overrightarrow {BA} - \overrightarrow {BC} \) bằng 2.

Đúng
Sai
d) Độ dài của vectơ \(\overrightarrow {BA} + \overrightarrow {BC} \) bằng \(\sqrt 3 \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP