Câu hỏi:

18/12/2025 35 Lưu

Cho tam giác\(ABC\)\(A\left( { - 3;2} \right),B\left( {2;4} \right),C\left( {1; - 2} \right)\).

a) Tính tọa độ vectơ \(\overrightarrow {AB} \) và độ dài đoạn thẳng \(AB\).

b) Tìm tọa độ trọng tâm \(G\) của tam giác \(ABC\).

c) Tìm tọa độ điểm \(M\) thuộc trục hoành sao cho \(AM + MC\) ngắn nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\overrightarrow {AB} = \left( {5;2} \right),\overrightarrow {AB} = \sqrt {25 + 4} = \sqrt {29} \).

b) Tọa độ trọng tâm \(G\)\(\left\{ \begin{array}{l}{x_G} = \frac{{ - 3 + 2 + 1}}{3} = 0\\{y_G} = \frac{{2 + 4 - 2}}{3} = \frac{4}{3}\end{array} \right.\)\( \Rightarrow G\left( {0;\frac{4}{3}} \right)\).

c) Ta có \(A\)\(C\) khác phía so với trục hoành nên \(AM + MC\) ngắn nhất khi \(A,M,C\) thẳng hàng.

Gọi \(M\left( {x;0} \right)\) thuộc trục hoành , ta có \(\overrightarrow {AM} = \left( {x + 3; - 2} \right),\overrightarrow {AC} = \left( {4; - 4} \right)\) cùng phương nên \(\frac{{x + 3}}{4} = \frac{{ - 2}}{{ - 4}} \Leftrightarrow x = - 1\). Vậy \(M\left( { - 1;0} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác đều \(ABC\) và các điểm \(M,N,P\) thỏa mãn (ảnh 1)

Ta có \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {AB} + k\overrightarrow {BC} = \overrightarrow {AB} + k\overrightarrow {AC} - k\overrightarrow {AB} \)\( = k\overrightarrow {AC} + \left( {1 - k} \right)\overrightarrow {AB} \).

\(\overrightarrow {PN} = \overrightarrow {AN} - \overrightarrow {AP} = \frac{1}{3}\overrightarrow {AC} - \frac{4}{{15}}\overrightarrow {AB} \).

Để \(AM \bot PN\) thì \(\overrightarrow {AM} \cdot \overrightarrow {PN} = 0\)\( \Leftrightarrow \left( {k\overrightarrow {AC} + \left( {1 - k} \right)\overrightarrow {AB} } \right)\left( {\frac{1}{3}\overrightarrow {AC} - \frac{4}{{15}}\overrightarrow {AB} } \right) = 0\)

\( \Leftrightarrow \frac{k}{3}{\overrightarrow {AC} ^2} - \frac{{4k}}{{15}}\overrightarrow {AC} \cdot \overrightarrow {AB} + \frac{{1 - k}}{3} \cdot \overrightarrow {AB} \cdot \overrightarrow {AC} - \frac{{4\left( {1 - k} \right)}}{{15}}{\overrightarrow {AB} ^2} = 0\)

\( \Leftrightarrow \left[ {\frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}}} \right]{\overrightarrow {AC} ^2} + \left( {\frac{{1 - k}}{3} - \frac{{4k}}{{15}}} \right)\left| {\overrightarrow {AC} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos 60^\circ = 0\)\( \Leftrightarrow \left[ {\frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}}} \right]{\overrightarrow {AC} ^2} + \left( {\frac{{1 - k}}{6} - \frac{{4k}}{{30}}} \right){\left| {\overrightarrow {AC} } \right|^2} = 0\)

\( \Leftrightarrow \left( {\frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}} + \frac{{1 - k}}{6} - \frac{{4k}}{{30}}} \right){\left| {\overrightarrow {AC} } \right|^2} = 0\)

\( \Leftrightarrow \frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}} + \frac{{1 - k}}{6} - \frac{{4k}}{{30}} = 0\)\( \Leftrightarrow \frac{{3k}}{{10}} = \frac{1}{{10}}\)\( \Leftrightarrow k = \frac{1}{3}\).

Suy ra \(a = 1;b = 3\). Do đó \(2a + b = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Tọa độ của \(\overrightarrow {BC} \)\(\left( {0; - 4} \right)\).

Đúng
Sai

b) Tọa độ trung điểm của \(AB\)\(\left( {\frac{3}{2};1} \right)\).

Đúng
Sai

c) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = - 9\).

Đúng
Sai
d) Gọi \(D\left( {a;b} \right)\) là chân đường phân giác trong kẻ từ đỉnh \(A\) lên \(BC\). Khi đó \(a + b = 2,5\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AM} \).                                              

B. \(\overrightarrow {AB} + \overrightarrow {AC} = 3\overrightarrow {AG} \).  

C. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = 3\overrightarrow {GM} \).  
D. \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP