Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) có các đỉnh thỏa mãn \(\overrightarrow {OA} = \overrightarrow i - \overrightarrow j \), \(\overrightarrow {OB} = 3\overrightarrow i + 4\overrightarrow j \), \(\overrightarrow {OC} = - 5\overrightarrow i \).
Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) có các đỉnh thỏa mãn \(\overrightarrow {OA} = \overrightarrow i - \overrightarrow j \), \(\overrightarrow {OB} = 3\overrightarrow i + 4\overrightarrow j \), \(\overrightarrow {OC} = - 5\overrightarrow i \).
a) \(A\left( {1; - 1} \right),B\left( {3;4} \right),C\left( { - 5;0} \right)\).
b) Nếu \(ABCD\) là hình bình hành thì điểm \(D\) có tọa độ là \(D\left( { - 3;5} \right)\).
c) \(\overrightarrow {AB} = \left( {2;5} \right)\).
Quảng cáo
Trả lời:
a) \(\overrightarrow {OA} = \overrightarrow i - \overrightarrow j \)\( \Rightarrow A\left( {1; - 1} \right)\); \(\overrightarrow {OB} = 3\overrightarrow i + 4\overrightarrow j \Rightarrow B\left( {3;4} \right)\); \(\overrightarrow {OC} = - 5\overrightarrow i \Rightarrow C\left( { - 5;0} \right)\).
b) Gọi \(D\left( {x;y} \right)\). Có \(\overrightarrow {AD} = \left( {x - 1;y + 1} \right),\overrightarrow {BC} = \left( { - 8; - 4} \right)\).
Vì \(ABCD\) là hình bình hành nên \(\left\{ \begin{array}{l}x - 1 = - 8\\y + 1 = - 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - 7\\y = - 3\end{array} \right.\)\( \Rightarrow D\left( { - 7; - 3} \right)\).
c) \(\overrightarrow {AB} = \left( {2;5} \right)\).
d) \(M\left( {a;b} \right)\) là điểm đối xứng của \(A\) qua \(B\) nên \(B\) là trung điểm của \(MA\).
Khi đó \(\left\{ \begin{array}{l}{x_M} = 2{x_B} - {x_A}\\{y_M} = 2{y_B} - {y_A}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 2 \cdot 3 - 1\\b = 2 \cdot 4 - \left( { - 1} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 5\\b = 9\end{array} \right.\).
Khi đó \(2a - b = 1\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo đề ta có hệ phương trình \(\left\{ \begin{array}{l}{a^2} + {b^2} = {\left( {8 - a} \right)^2} + {\left( {4 - b} \right)^2}\\{a^2} + {b^2} = {\left( {7 - a} \right)^2} + {\left( {7 - b} \right)^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}16a + 8b = 80\\14a + 14b = 98\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 4\end{array} \right.\).
Khi đó \(a + b = 7\).
Lời giải

Ta có \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {AB} + k\overrightarrow {BC} = \overrightarrow {AB} + k\overrightarrow {AC} - k\overrightarrow {AB} \)\( = k\overrightarrow {AC} + \left( {1 - k} \right)\overrightarrow {AB} \).
\(\overrightarrow {PN} = \overrightarrow {AN} - \overrightarrow {AP} = \frac{1}{3}\overrightarrow {AC} - \frac{4}{{15}}\overrightarrow {AB} \).
Để \(AM \bot PN\) thì \(\overrightarrow {AM} \cdot \overrightarrow {PN} = 0\)\( \Leftrightarrow \left( {k\overrightarrow {AC} + \left( {1 - k} \right)\overrightarrow {AB} } \right)\left( {\frac{1}{3}\overrightarrow {AC} - \frac{4}{{15}}\overrightarrow {AB} } \right) = 0\)
\( \Leftrightarrow \frac{k}{3}{\overrightarrow {AC} ^2} - \frac{{4k}}{{15}}\overrightarrow {AC} \cdot \overrightarrow {AB} + \frac{{1 - k}}{3} \cdot \overrightarrow {AB} \cdot \overrightarrow {AC} - \frac{{4\left( {1 - k} \right)}}{{15}}{\overrightarrow {AB} ^2} = 0\)
\( \Leftrightarrow \left[ {\frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}}} \right]{\overrightarrow {AC} ^2} + \left( {\frac{{1 - k}}{3} - \frac{{4k}}{{15}}} \right)\left| {\overrightarrow {AC} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos 60^\circ = 0\)\( \Leftrightarrow \left[ {\frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}}} \right]{\overrightarrow {AC} ^2} + \left( {\frac{{1 - k}}{6} - \frac{{4k}}{{30}}} \right){\left| {\overrightarrow {AC} } \right|^2} = 0\)
\( \Leftrightarrow \left( {\frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}} + \frac{{1 - k}}{6} - \frac{{4k}}{{30}}} \right){\left| {\overrightarrow {AC} } \right|^2} = 0\)
\( \Leftrightarrow \frac{k}{3} - \frac{{4\left( {1 - k} \right)}}{{15}} + \frac{{1 - k}}{6} - \frac{{4k}}{{30}} = 0\)\( \Leftrightarrow \frac{{3k}}{{10}} = \frac{1}{{10}}\)\( \Leftrightarrow k = \frac{1}{3}\).
Suy ra \(a = 1;b = 3\). Do đó \(2a + b = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AM} \).
B. \(\overrightarrow {AB} + \overrightarrow {AC} = 3\overrightarrow {AG} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
