Cho tam giác \(ABC\) biết \(BC = 8,CA = 6,\widehat C = 60^\circ \). Khi đó:
Cho tam giác \(ABC\) biết \(BC = 8,CA = 6,\widehat C = 60^\circ \). Khi đó:
a) \(AB \approx 7,20\)(kết quả làm tròn đến hàng phần trăm).
b) Góc \(A\) là góc tù.
c) Bán kính đường tròn nội tiếp tam giác \(ABC\) xấp xỉ bằng 1,96 (kết quả làm tròn đến hàng phần trăm).
Câu hỏi trong đề: Bài tập ôn tập Toán 10 Cánh diều Chương 4 có đáp án !!
Quảng cáo
Trả lời:
a) Ta có \(A{B^2} = A{C^2} + B{C^2} - 2 \cdot AC \cdot BC \cdot \cos \widehat C\)\( = {8^2} + {6^2} - 2 \cdot 8 \cdot 6 \cdot \cos 60^\circ = 52\)\( \Rightarrow AB = \sqrt {52} \approx 7,21\).
b) Có \(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2 \cdot AB \cdot AC}} = \frac{{52 + 36 - 64}}{{2 \cdot \sqrt {52} \cdot 6}} = \frac{{\sqrt {13} }}{{13}} > 0\).
Suy ra \(A\) là góc nhọn.
c) Có \(p = \frac{{8 + 6 + \sqrt {52} }}{2}\).
Diện tích tam giác \(ABC\) là \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {432} = 12\sqrt 3 \).
Khi đó \(r = \frac{S}{p} = \frac{{12\sqrt 3 }}{{\frac{{8 + 6 + \sqrt {52} }}{2}}} \approx 1,96\).
d)

Ta có \(\frac{{{S_{ABG}}}}{{{S_{ABC}}}} = \frac{{MG}}{{MC}} = \frac{1}{3}\)\( \Rightarrow {S_{ABG}} = \frac{1}{3}{S_{ABC}} = \frac{1}{3} \cdot 12\sqrt 3 = 4\sqrt 3 \).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Điểm \(M\) nằm giữa hai điểm \(A\) và \(B\).
b) \(\overrightarrow {AM} = \frac{3}{5}\overrightarrow {AB} \).
c) \(\overrightarrow {CM} = - \frac{2}{5}\overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} \).
Lời giải

a) \(2\overrightarrow {MA} + 3\overrightarrow {MB} = \overrightarrow 0 \) nên \(\overrightarrow {MA} ,\overrightarrow {MB} \) là hai vectơ ngược hướng.
Suy ra điểm \(M\) nằm giữa hai điểm \(A\) và \(B\).
b) \(2\overrightarrow {MA} + 3\overrightarrow {MB} = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {MA} = - \frac{3}{2}\overrightarrow {MB} \)\( \Leftrightarrow \overrightarrow {AM} = \frac{3}{2}\overrightarrow {MB} \)\( \Leftrightarrow \overrightarrow {AM} = \frac{3}{5}\overrightarrow {AB} \).
c) \(\overrightarrow {CM} = \overrightarrow {CA} + \overrightarrow {AM} = - \overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} \).
d) \(\overrightarrow {CA} \cdot \overrightarrow {CM} = \overrightarrow {CA} \left( { - \overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} } \right)\)\( = {\overrightarrow {AC} ^2} - \frac{3}{5}\overrightarrow {AC} \cdot \overrightarrow {AB} \)\( = {\overrightarrow {AC} ^2} - \frac{3}{5}\left| {\overrightarrow {AC} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos \left( {\overrightarrow {AC} ,\overrightarrow {AB} } \right)\)
\( = 4{a^2} - \frac{3}{5} \cdot 2a \cdot a \cdot \cos 60^\circ \)\( = 4{a^2} - \frac{3}{5}{a^2} = \frac{{17}}{5}{a^2}\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Lời giải
Có \({\left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right)^2} = {\overrightarrow {{F_1}} ^2} + 2\overrightarrow {{F_1}} \cdot \overrightarrow {{F_2}} + {\overrightarrow {{F_2}} ^2}\)\( = {\overrightarrow {{F_1}} ^2} + 2\left| {\overrightarrow {{F_1}} } \right| \cdot \left| {\overrightarrow {{F_2}} } \right| \cdot \cos \left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} } \right) + {\overrightarrow {{F_2}} ^2}\)
\( = {150^2} + 2 \cdot 150 \cdot 100 \cdot \cos 120^\circ + {100^2}\)\( = 17500\).
Khi đó \(\left| {\overrightarrow F } \right| = \sqrt {17500} \approx 132\) (N).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng và \(\left| {\overrightarrow a } \right| = - 3\left| {\overrightarrow b } \right|\).
B. \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

