Câu hỏi:

19/12/2025 44 Lưu

Để đo khoảng cách từ một điểm \(A\) trên bờ sông đến gốc cây \(C\) trên cù lao giữa sông, người ta chọn một điểm \(B\) cùng ở trên bờ với \(A\) sao cho từ \(A\)\(B\) có thể nhìn thấy điểm \(C\). Ta đo được khoảng cách \(AB = 40\;{\rm{m}}\), \(\widehat {CAB} = 60^\circ ,\widehat {CBA} = 80^\circ \). Khoảng cách từ điểm \(A\) đến gốc cây \(C\) là bao nhiêu mét (làm tròn đến hàng phần mười).

Để đo khoảng cách từ một điểm \(A\) trên bờ sông đến gốc cây \(C\) trên cù lao giữa sông, người ta (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

61,3

Xét \(\Delta ABC\)\(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {60^\circ + 80^\circ } \right) = 40^\circ \).

Áp dụng định lí sin cho tam giác \(ABC\), ta có \(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow AC = \frac{{AB\sin B}}{{\sin C}} = \frac{{40 \cdot \sin 80^\circ }}{{\sin 40^\circ }} \approx 61,3\)(m).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Điểm \(M\) nằm giữa hai điểm \(A\)\(B\).

Đúng
Sai

b) \(\overrightarrow {AM} = \frac{3}{5}\overrightarrow {AB} \).

Đúng
Sai

c) \(\overrightarrow {CM} = - \frac{2}{5}\overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} \).

Đúng
Sai
d) \(\overrightarrow {CA} \cdot \overrightarrow {CM} = \frac{{17}}{5}{a^2}\).
Đúng
Sai

Lời giải

Cho tam giác \(ABC\) có \(AB = a,AC = 2a,góc A = 60độ ). \(M\) là điểm thỏa mãn (ảnh 1)

a) \(2\overrightarrow {MA} + 3\overrightarrow {MB} = \overrightarrow 0 \) nên \(\overrightarrow {MA} ,\overrightarrow {MB} \) là hai vectơ ngược hướng.

Suy ra điểm \(M\) nằm giữa hai điểm \(A\)\(B\).

b) \(2\overrightarrow {MA} + 3\overrightarrow {MB} = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {MA} = - \frac{3}{2}\overrightarrow {MB} \)\( \Leftrightarrow \overrightarrow {AM} = \frac{3}{2}\overrightarrow {MB} \)\( \Leftrightarrow \overrightarrow {AM} = \frac{3}{5}\overrightarrow {AB} \).

c) \(\overrightarrow {CM} = \overrightarrow {CA} + \overrightarrow {AM} = - \overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} \).

d) \(\overrightarrow {CA} \cdot \overrightarrow {CM} = \overrightarrow {CA} \left( { - \overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} } \right)\)\( = {\overrightarrow {AC} ^2} - \frac{3}{5}\overrightarrow {AC} \cdot \overrightarrow {AB} \)\( = {\overrightarrow {AC} ^2} - \frac{3}{5}\left| {\overrightarrow {AC} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos \left( {\overrightarrow {AC} ,\overrightarrow {AB} } \right)\)

\( = 4{a^2} - \frac{3}{5} \cdot 2a \cdot a \cdot \cos 60^\circ \)\( = 4{a^2} - \frac{3}{5}{a^2} = \frac{{17}}{5}{a^2}\).

Đáp án: a) Đúng;    b) Đúng;     c) Sai;     d) Đúng.

Lời giải

\({\left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right)^2} = {\overrightarrow {{F_1}} ^2} + 2\overrightarrow {{F_1}} \cdot \overrightarrow {{F_2}} + {\overrightarrow {{F_2}} ^2}\)\( = {\overrightarrow {{F_1}} ^2} + 2\left| {\overrightarrow {{F_1}} } \right| \cdot \left| {\overrightarrow {{F_2}} } \right| \cdot \cos \left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} } \right) + {\overrightarrow {{F_2}} ^2}\)

\( = {150^2} + 2 \cdot 150 \cdot 100 \cdot \cos 120^\circ + {100^2}\)\( = 17500\).

Khi đó \(\left| {\overrightarrow F } \right| = \sqrt {17500} \approx 132\) (N).

Câu 5

A. \(\overrightarrow a \)\(\overrightarrow b \) ngược hướng và \(\left| {\overrightarrow a } \right| = - 3\left| {\overrightarrow b } \right|\).                 

B. \(\overrightarrow a \)\(\overrightarrow b \) cùng hướng.                               

C. \(\overrightarrow a \)\(\overrightarrow b \) ngược hướng và \(\left| {\overrightarrow a } \right| = 3\left| {\overrightarrow b } \right|\).                     
D. \(\overrightarrow a \)\(\overrightarrow b \) có giá song song.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2\sqrt 3 a\).               
B. \(4a\).                            
C. \(\sqrt 3 a\).                 
D. \(2\sqrt 2 a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP