Câu hỏi:

19/12/2025 13 Lưu

Cho tam giác \(ABC\)\(AB = 2,AC = 3,\widehat {BAC} = 60^\circ \).

a) Tính các tích vô hướng \(\overrightarrow {AB} \cdot \overrightarrow {AC} ,\overrightarrow {AB} \cdot \overrightarrow {BC} \).

b) Gọi \(M\) là trung điểm \(AB\), \(N\) nằm trên cạnh \(AC\)sao cho \(AN = 2\)\(P\) là điểm đối xứng với \(B\) qua \(C\). Chứng minh rằng ba điểm \(M,N,P\) thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tam giác ABC  có AB = 2, AC = 3 , góc BAC = 60 độ. (ảnh 1)

a) Có \(\overrightarrow {AB} \cdot \overrightarrow {AC} = \left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = 2 \cdot 3 \cdot \cos 60^\circ = 3\).

 \(\overrightarrow {AB} \cdot \overrightarrow {BC} = \overrightarrow {AB} \cdot \left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \overrightarrow {AB} \cdot \overrightarrow {AC} - {\overrightarrow {AB} ^2} = 3 - {2^2} = - 1\).

b) Có \(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AN} = - \frac{1}{2}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AC} \).

\(\overrightarrow {MP} = \overrightarrow {MB} + \overrightarrow {BP} = \frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {BC} = \frac{1}{2}\overrightarrow {AB} + 2\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = - \frac{3}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \).

Do đó \(\overrightarrow {MN} = \frac{1}{3}\overrightarrow {MP} \). Suy ra \(M,N,P\) thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trên đoạn đường hành trình giữa hai điểm A và B có một ngọn núi, chính vì vậy đã phải đi (ảnh 2)

Áp dụng định lí cô sin cho tam giác \(BCD\), có

\(B{C^2} = C{D^2} + B{D^2} - 2CD \cdot DB \cdot \cos D = {500^2} + {400^2} - 2 \cdot 500 \cdot 400 \cdot \cos 122^\circ \Rightarrow BC \approx 789\)(m).

Áp dụng định lí sin cho tam giác \(BCD\), có:

\(\frac{{BC}}{{\sin D}} = \frac{{BD}}{{\sin C}} \Rightarrow \sin C = \frac{{BD \cdot \sin D}}{{BC}} = \frac{{400 \cdot \sin 122^\circ }}{{789}} \Rightarrow \widehat C \approx 25,5^\circ \).

Suy ra \(\widehat {ACB} = 138^\circ - 25,5^\circ = 112,5^\circ \).

Áp dụng định lí cô sin cho tam giác \(ABC\), có

\(A{B^2} = A{C^2} + B{C^2} - 2AC \cdot BC \cdot \cos C = {400^2} + {789^2} - 2 \cdot 400 \cdot 789 \cdot \cos 112,5^\circ \Rightarrow AB \approx 1012\) (m).

Lời giải

\({\left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right)^2} = {\overrightarrow {{F_1}} ^2} + 2\overrightarrow {{F_1}} \cdot \overrightarrow {{F_2}} + {\overrightarrow {{F_2}} ^2}\)\( = {\overrightarrow {{F_1}} ^2} + 2\left| {\overrightarrow {{F_1}} } \right| \cdot \left| {\overrightarrow {{F_2}} } \right| \cdot \cos \left( {\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} } \right) + {\overrightarrow {{F_2}} ^2}\)

\( = {150^2} + 2 \cdot 150 \cdot 100 \cdot \cos 120^\circ + {100^2}\)\( = 17500\).

Khi đó \(\left| {\overrightarrow F } \right| = \sqrt {17500} \approx 132\) (N).

Câu 3

A. \(\overrightarrow {AB} = \overrightarrow {CD} \).                                   
B. \(\overrightarrow {OA} = \overrightarrow {OC} \).  
C. \(\overrightarrow {AB} = \overrightarrow {BC} \).     
D. \(\overrightarrow {AD} = \overrightarrow {BC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Điểm \(M\) nằm giữa hai điểm \(A\)\(B\).

Đúng
Sai

b) \(\overrightarrow {AM} = \frac{3}{5}\overrightarrow {AB} \).

Đúng
Sai

c) \(\overrightarrow {CM} = - \frac{2}{5}\overrightarrow {AC} + \frac{3}{5}\overrightarrow {AB} \).

Đúng
Sai
d) \(\overrightarrow {CA} \cdot \overrightarrow {CM} = \frac{{17}}{5}{a^2}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP