Có 4 cặp vợ chồng ngồi trên một dãy ghế dài. Có bao nhiêu cách sắp xếp sao cho vợ và chồng của mỗi gia đình đều ngồi cạnh nhau.
Quảng cáo
Trả lời:
Nhóm mỗi cặp vợ chồng lại với nhau có \[2!.2!.2!.2!\] cách
Sắp xếp 4 cặp vợ chồng lên một dãy ghế dài có \[4!\] cách
Theo quy tắc nhân, ta có \[2!.2!.2!.2!.4! = 384\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số phần tử của không gian mẫu: \[n\left( \Omega \right) = A_6^3 = 120\].
Gọi \[A\] là biến cố: "Số chọn được là một số chia hết cho \[5\]".
Số chia hết cho \[5\] được lập từ các chữ số trên có dạng \[\overline {ab5} \].
Chọn \[2\] số \[a,b\] từ các chữ số \[1,2,3,4,6\] là một chỉnh hợp chập \[2\] của \[5\] phần tử.
Số cách chọn là \[n\left( A \right) = A_5^2 = 20\].
Vậy xác suất cần tìm là: \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{20}}{{120}} = \frac{1}{6} \Rightarrow \left\{ \begin{array}{l}a = 1\\b = 6\end{array} \right. \Rightarrow T = 2 + 6 = 8\].
Câu 2
A. \(7!\).
B. \(144\).
C. \(2880\).
D. \(480\).
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
