Câu hỏi:

22/12/2025 37 Lưu

Cho 2 đường thẳng \({d_1}:\,mx - \left( {m - 1} \right)y + 4 - {m^2} = 0\) và \({d_2}:\,\left( {m + 3} \right)x + y - 3m - 1 = 0\). Tìm giá trị của \(m\) để hai đường thẳng vuông góc với nhau.

A. \(2\).                            
B. \(0\).                          
C. \(1\).                         
D. \( - 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là D

Điều kiện: \({m^2} + {\left( { - m + 1} \right)^2} \ne 0\) và \({\left( {m + 3} \right)^2} + 1 \ne 0\).

Véc tơ pháp tuyến của \({d_1}\) là \(\overrightarrow {{n_1}}  = \left( {m; - m + 1} \right)\).

Véc tơ pháp tuyến của \({d_2}\) là \(\overrightarrow {{n_2}}  = \left( {m + 3;1} \right)\).

Hai đường thẳng vuông góc khi và chỉ khi \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 0\)\( \Leftrightarrow m\left( {m + 3} \right) + \left( { - m + 1} \right) = 0\)

\( \Leftrightarrow {\left( {m + 1} \right)^2} = 0 \Leftrightarrow m =  - 1\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng: Số cách xếp ngẫu nhiên \(7\) học sinh không kể nam nữ lên ghế là một hoán vị của \(7\): \[{P_7} = 5040\].

b) Sai: Các học sinh cùng giới ngồi cạnh nhau, ta coi các bạn nam là nhóm A, các bạn nữ là nhóm B. Xếp \(2\) nhóm này lên ghế có: \(2! = 2\) cách.

Hoán vị \(5\) học sinh nam có: \(5! = 120\) cách

Hoán vị \(2\) học sinh nữ có: \(2! = 2\) cách

Vậy số cách xếp để học sinh cùng giới ngồi cạnh nhau là \(2.120.2 = 480\)cách.

c) Đúng: Xếp \(2\) học sinh nữ vào \(2\) đầu ghế có: \(2! = 2\) cách.

Xếp \(5\) học sinh nam vào \(5\) vị trí ở giữa có: \(5! = 120\) cách

Vậy số cách xếp để \(2\) học sinh nữ ngồi ở \(2\)đầu ghế là \(2.120 = 240\)cách.

d) Đúng: Để \(2\) học sinh nữ ngồi cạnh nhau ta coi \(2\) học sinh nữ là nhóm A.

Xếp nhóm \(A\) và \(5\) học sinh nam ghế có: \(6! = 720\) cách.

Hoán vị \(2\) học sinh nữ có: \(2! = 2\) cách

Vậy số cách xếp để \(2\) học sinh nữ ngồi cạnh nhau là \(720.2 = 1440\)cách.

Suy ra xếp \(7\) học sinh vào ghế, số cách xếp để\(2\) học sinh nữ không ngồi cạnh nhau là \[5040 - 1440 = 3600\].

Lời giải

Ta có: \({x^2} + (m - 2)x + 5m + 1 > 0\)\(,\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a > 0}\\{\Delta  < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{1 > 0}\\{{{\left( {m - 2} \right)}^2} - 4\left( {5m + 1} \right) < 0}\end{array}} \right.\)\( \Leftrightarrow {m^2} - 24m < 0 \Leftrightarrow m \in \left( {0\,;\,24} \right)\).

Vậy có tất cả \(23\) giá trị thoả mãn.

Câu 4

A. \(\left\{ 0 \right\}\).     
B. \(\left\{ { - \frac{8}{3};0} \right\}\).              
C. \(\emptyset \).        
D. \(\left\{ { - \frac{8}{3}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP