Trong mặt phẳng \[Oxy\], cho hypebol \[\left( H \right):\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\]. Xét tính đúng sai trong các khẳng định sau:
a) Hypebol \(\left( H \right)\) có toạ độ tiêu điểm \[{F_1}\left( { - 5;0} \right)\,,\,\,{F_2}\left( {5;0} \right)\].
b) Hypebol \(\left( H \right)\) có độ dài trục thực bằng \(16\).
c) Hypebol \(\left( H \right)\) có độ dài trục ảo bằng \(4\).
d) Hiệu các khoảng cách từ mỗi điểm nằm trên \(\left( H \right)\)đến hai tiêu điểm có giá trị tuyệt đối bằng 10.
Quảng cáo
Trả lời:
a) Đúng: vì ta có \[c = \sqrt {{a^2} + {b^2}} = \sqrt {16 + 9} = 5 \Rightarrow {F_1}\left( { - 5;0} \right),{F_2}\left( { - 5;0} \right)\].
b) Sai: vì độ dài trục thực \[2a = 2\sqrt {16} = 8\].
c) Sai: vì độ dài trục ảo \[2b = 2\sqrt 9 = 6\].
d) Sai: vì hiệu các khoảng cách từ mỗi điểm nằm trên \(\left( H \right)\)đến hai tiêu điểm có giá trị tuyệt đối là \[\left| {M{F_1} - M{F_2}} \right| = 2a = 8\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là A
Ta có: \(\sqrt {3{x^2} - 4x + 4} = 3x + 2 \Leftrightarrow \left\{ \begin{array}{l}3x + 2 \ge 0\\3{x^2} - 4x + 4 = {\left( {3x + 2} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge - \frac{2}{3}\\6{x^2} + 16x = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge - \frac{2}{3}\\x = 0,x = - \frac{8}{3}\end{array} \right. \Leftrightarrow x = 0\).
Vậy tập nghiệm của phương trình là \(\left\{ 0 \right\}\).
Lời giải

Chọn hệ trục tọa độ như hình vẽ
Giả sử quỹ đạo của quả bóng là parabol \(\left( P \right)\) có phương trình \(y\; = a{x^2} + bx + c\,\left( {a \ne 0} \right)\).
Gắn hệ trục tọa độ tại các điểm \(x\, = \,0;\,x\, = 1;\,x\, = \,3,5\).\(\)
Theo giả thiết suy ra|C|D|0|2|5| parabol \(\left( P \right)\) đi qua các điểm \(A\left( {0;1} \right),\,B\left( {1;6} \right),\,C\left( {3,5;\,9,75} \right)\) ta có hệ
\(\left\{ \begin{array}{l}c\, = \,1\\a\, + b\, + c\, = 6\\\frac{{49}}{4}a + \frac{7}{2}b\, + c\, = \,9,75\end{array} \right. \Rightarrow \left\{ \begin{array}{l}c\, = \,1\\b\, = \,6\\a\, = \, - 1\end{array} \right. \Rightarrow \left( P \right):\,y\, = \, - {x^2} + 6x\, + 1\).
Ta có \(y\, = \, - {x^2} + 6x + 1\, = \, - {\left( {x - 3} \right)^2} + 10 \le \,10\).
Suy ra độ cao nhất mà quả bóng đạt được là \(10m\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
