Câu hỏi:

22/12/2025 5 Lưu

Trong mặt phẳng \[Oxy\], cho hypebol \[\left( H \right):\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\]. Xét tính đúng sai trong các khẳng định sau:

a) Hypebol \(\left( H \right)\) có toạ độ tiêu điểm \[{F_1}\left( { - 5;0} \right)\,,\,\,{F_2}\left( {5;0} \right)\].

b) Hypebol \(\left( H \right)\) có độ dài trục thực bằng \(16\).

c) Hypebol \(\left( H \right)\) có độ dài trục ảo bằng \(4\).

d) Hiệu các khoảng cách từ mỗi điểm nằm trên \(\left( H \right)\)đến hai tiêu điểm có giá trị tuyệt đối bằng 10.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng: vì ta có \[c = \sqrt {{a^2} + {b^2}}  = \sqrt {16 + 9}  = 5 \Rightarrow {F_1}\left( { - 5;0} \right),{F_2}\left( { - 5;0} \right)\].

b) Sai: vì độ dài trục thực \[2a = 2\sqrt {16}  = 8\].

c) Sai: vì độ dài trục ảo \[2b = 2\sqrt 9  = 6\].

d) Sai: vì hiệu các khoảng cách từ mỗi điểm nằm trên \(\left( H \right)\)đến hai tiêu điểm có giá trị tuyệt đối là \[\left| {M{F_1} - M{F_2}} \right| = 2a = 8\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left\{ 0 \right\}\).     
B. \(\left\{ { - \frac{8}{3};0} \right\}\).              
C. \(\emptyset \).        
D. \(\left\{ { - \frac{8}{3}} \right\}\).

Lời giải

Đáp án đúng là A

Ta có: \(\sqrt {3{x^2} - 4x + 4}  = 3x + 2 \Leftrightarrow \left\{ \begin{array}{l}3x + 2 \ge 0\\3{x^2} - 4x + 4 = {\left( {3x + 2} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - \frac{2}{3}\\6{x^2} + 16x = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ge  - \frac{2}{3}\\x = 0,x =  - \frac{8}{3}\end{array} \right. \Leftrightarrow x = 0\).

Vậy tập nghiệm của phương trình là \(\left\{ 0 \right\}\).

Lời giải

Một quả bóng cầu thủ sút lên rồi rơi xuống theo quỹ đạo là parabol (ảnh 1)

Chọn hệ trục tọa độ như hình vẽ

Giả sử quỹ đạo của quả bóng là parabol \(\left( P \right)\) có phương trình \(y\; = a{x^2} + bx + c\,\left( {a \ne 0} \right)\).

Gắn hệ trục tọa độ tại các điểm \(x\, = \,0;\,x\, = 1;\,x\, = \,3,5\).\(\)

Theo giả thiết suy ra|C|D|0|2|5| parabol \(\left( P \right)\) đi qua các điểm \(A\left( {0;1} \right),\,B\left( {1;6} \right),\,C\left( {3,5;\,9,75} \right)\) ta có hệ

\(\left\{ \begin{array}{l}c\, = \,1\\a\, + b\, + c\, = 6\\\frac{{49}}{4}a + \frac{7}{2}b\, + c\, = \,9,75\end{array} \right. \Rightarrow \left\{ \begin{array}{l}c\, = \,1\\b\, = \,6\\a\, = \, - 1\end{array} \right. \Rightarrow \left( P \right):\,y\, = \, - {x^2} + 6x\, + 1\).

Ta có \(y\, = \, - {x^2} + 6x + 1\, = \, - {\left( {x - 3} \right)^2} + 10 \le \,10\).

Suy ra độ cao nhất mà quả bóng đạt được là \(10m\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP