Câu hỏi:

22/12/2025 76 Lưu

Một hộp phấn có 4 viên phấn trắng và 3 viên phấn xanh. Lấy ngẫu nhiên đồng thời 2 viên phấn từ hộp trên. Xác suất để lấy được 2 viên phấn xanh bằng \(\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản và \(a,\,b \in \mathbb{Z}\). Tính giá trị biểu thức \(T = 2a + 4b\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = C_7^2 = 21\).

Gọi \(A\) là biến cố: “ Chọn được 2 viên phấn xanh”.

Số phần tử của biến cố \(A\) là \(n\left( A \right) = C_3^2 = 3\).

Vậy xác suất chọn được 2 viên phấn xanh từ hộp trên là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{3}{{21}} = \frac{1}{7}\).

Khi đó: \(\left\{ \begin{array}{l}a = 1\\b = 7\end{array} \right. \Rightarrow T = 2.1 + 4.7 = 30\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một quả bóng cầu thủ sút lên rồi rơi xuống theo quỹ đạo là parabol (ảnh 1)

Chọn hệ trục tọa độ như hình vẽ

Giả sử quỹ đạo của quả bóng là parabol \(\left( P \right)\) có phương trình \(y\; = a{x^2} + bx + c\,\left( {a \ne 0} \right)\).

Gắn hệ trục tọa độ tại các điểm \(x\, = \,0;\,x\, = 1;\,x\, = \,3,5\).\(\)

Theo giả thiết suy ra|C|D|0|2|5| parabol \(\left( P \right)\) đi qua các điểm \(A\left( {0;1} \right),\,B\left( {1;6} \right),\,C\left( {3,5;\,9,75} \right)\) ta có hệ

\(\left\{ \begin{array}{l}c\, = \,1\\a\, + b\, + c\, = 6\\\frac{{49}}{4}a + \frac{7}{2}b\, + c\, = \,9,75\end{array} \right. \Rightarrow \left\{ \begin{array}{l}c\, = \,1\\b\, = \,6\\a\, = \, - 1\end{array} \right. \Rightarrow \left( P \right):\,y\, = \, - {x^2} + 6x\, + 1\).

Ta có \(y\, = \, - {x^2} + 6x + 1\, = \, - {\left( {x - 3} \right)^2} + 10 \le \,10\).

Suy ra độ cao nhất mà quả bóng đạt được là \(10m\).

Lời giải

Ta có: \({x^2} + (m - 2)x + 5m + 1 > 0\)\(,\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a > 0}\\{\Delta  < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{1 > 0}\\{{{\left( {m - 2} \right)}^2} - 4\left( {5m + 1} \right) < 0}\end{array}} \right.\)\( \Leftrightarrow {m^2} - 24m < 0 \Leftrightarrow m \in \left( {0\,;\,24} \right)\).

Vậy có tất cả \(23\) giá trị thoả mãn.

Câu 3

A. \(\left\{ 0 \right\}\).     
B. \(\left\{ { - \frac{8}{3};0} \right\}\).              
C. \(\emptyset \).        
D. \(\left\{ { - \frac{8}{3}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP