Câu hỏi:

16/01/2026 32 Lưu

Một hình bình hành có hai cạnh nằm trên hai đường thẳng \[x + 3y - 6 = 0\]  và \[2x - 5y - 1 = 0\]. Tâm của hình bình hành là điểm \[I\left( {3;5} \right)\]. Viết phương trình hai cạnh còn lại.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(\frac{1}{2} \ne \frac{3}{{ - 5}}\), do đó hai đường thẳng \[x + 3y - 6 = 0\] và \[2x - 5y - 1 = 0\] cắt nhau.

Giả sử hình bình hành \(ABCD\) có hai cạnh \[AB:x + 3y - 6 = 0\] và \[AD:2x - 5y - 1 = 0\].

Khi đó, tọa độ đỉnh \(A\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}x + 3y - 6 = 0\\2x - 5y - 1 = 0\end{array} \right. \Rightarrow A\left( {3;1} \right)\].

Vì tâm của hình bình hành là điểm \[I\left( {3;5} \right)\] nên \[I\] là trung điểm của \[AC\], do đó:

\[\left\{ \begin{array}{l}2{x_I} = {x_A} + {x_C}\\2{y_I} = {y_A} + {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6 = 3 + {x_C}\\10 = 1 + {y_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 3\\{y_C} = 9\end{array} \right.\]\[ \Rightarrow C\left( {3;9} \right)\].

Vì \[DC\,\,{\rm{//}}\,\,AB\] nên phương trình \[DC:x + 3y + n = 0\] \(\left( {n \ne  - 6} \right)\).

\[C\left( {3;9} \right) \in DC \Rightarrow 3 + 27 + n = 0 \Rightarrow n =  - 30\] (t/m).

\[ \Rightarrow \] Phương trình \[DC:x + 3y - 30 = 0\].

Vì \[BC\,\,{\rm{//}}\,AD\] nên phương trình \[BC:2x - 5y + m = 0\,\,\,\left( {m \ne  - 1} \right)\].

\[C\left( {3;9} \right) \in BC \Rightarrow 6 - 45 + m = 0 \Rightarrow m = 39\] (t/m).

\[ \Rightarrow \] Phương trình \[BC:2x - 5y + 39 = 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(a > 0,\,\,b > 0,\,\,c > 0\);                                                             

B. \(a > 0,\,\,b > 0,\,\,c < 0\);                            

C. \(a > 0,\,\,b < 0,\,\,c < 0\);                                                              
D. \(a > 0,\,\,b < 0,\,\,c > 0\).

Lời giải

Đáp án đúng là: B

Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị như hình vẽ dưới đây. Khẳng định nào sau đây là đúng? (ảnh 2)

Đồ thị hàm số cắt trục \(Oy\) tại điểm nằm phía dưới trục \(Ox\) nên \(c < 0\).

Đồ thị có bề lõm hướng lên trên nên \(a > 0\).

Tọa độ đỉnh nằm ở phía bên trái trục \(Oy\) nên \( - \frac{b}{{2a}} < 0 \Rightarrow b > 0\).

Câu 2

A. \(\left( { - 1;\,\, - 2} \right)\);                        
B. \(\left( {1;\,2} \right)\);    
C. \(\left( { - 2;\,\,1} \right)\);         
D. \(\left( { - 1;\,\,2} \right)\).

Lời giải

Đáp án đúng là: D

Ta có: \(\overrightarrow {AB}  = \left( {5 - 1;\,\,4 - 2} \right) = \left( {4;\,\,2} \right)\) là một vectơ chỉ phương của đường thẳng \(AB\), nên \(\overrightarrow u  = \left( {2;\,\, - 4} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).

Do đó, đường thẳng \(AB\) cũng có một vectơ chỉ phương là \(\overrightarrow {u'}  =  - \frac{1}{2}\overrightarrow u  =  - \frac{1}{2}\left( {2;\,\, - 4} \right) = \left( { - 1;\,\,2} \right)\).

Câu 3

Giá trị nhỏ nhất của hàm số \(y = 2{x^2} + x - 3\) là

A. \(\frac{{ - 25}}{8}\);                                    
B. – 2;                        
C. – 3;         
D.\(\frac{{ - 21}}{8}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(a = 1,a =  - 14\);  
B. \(a = \frac{2}{7},a = 14\);                            
C. \(a =  - 2,a =  - 14\);                                  
D. \(a = \frac{2}{7},a =  - 14\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(S = \left\{ {\frac{1}{2};\,2} \right\}\);        
B. \(S = \left\{ 2 \right\}\);   
C. \(S = \left\{ {\frac{1}{2}} \right\}\);                                    
D. \(S = \emptyset \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP