Câu hỏi:

01/01/2026 5 Lưu

Trong một hộp có \(10\) viên bi đánh số từ \(1\) đến \(10\), lấy ngẫu nhiên ra hai bi. Tính xác suất để hai bi lấy ra có tích hai số trên chúng là một số lẻ.

A. \(\frac{1}{2}\);       
B. \(\frac{4}{9}\);       
C. \(\frac{1}{9}\);       
D. \(\frac{2}{9}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Số phần tử của không gian mẫu: \(n\left( \Omega  \right) = C_{10}^2\).

Gọi biến cố \(A\): “Hai bi lấy ra có tích hai số trên chúng là một số lẻ”.

Vì tích hai số là số lẻ nên hai số được chọn phải được đánh số lẻ nên ta chọn \(2\) trong \(5\) viên bi đánh số lẻ.

Số phần tử của biến cố \(A\) là: \(n\left( A \right) = C_5^2\).

Vậy \(P\left( A \right) = \frac{{C_5^2}}{{C_{10}^2}} = \frac{2}{9}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Một mảnh vườn hình elip có độ dài trục lớn bằng 12m, độ dài trục bé bằng 8m. Người ta dự định trồng hoa trong một hình chữ nhật nội tiếp của elip như hình vẽ. Hỏi diện tích trồng hoa lớn nhất có thể là? (ảnh 2)

Đặt phương trình chính tắc của \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).

Ta có \(2a = 12 \Rightarrow a = 6\), \(2b = 8 \Rightarrow b = 4\). Suy ra \(\left( E \right):\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\).

Chọn \(C\left( {{x_C};\,{y_C}} \right)\) là đỉnh hình chữ nhật và \({x_C} > 0,{y_C} > 0\).

\( \Rightarrow \frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}} = 1\);

Diện tích hình chữ nhật là \(S = 4{x_C}{y_C} = 48.2.\frac{{{x_C}}}{6}.\frac{{{y_C}}}{4} \le 48\left( {\frac{{x_C^2}}{{36}} + \frac{{y_C^2}}{{16}}} \right) = 48\).

Vậy diện tích trồng hoa lớn nhất có thể là \(48{m^2}\).

Lời giải

Hướng dẫn giải

Viết phương trình đường tròn (C). (ảnh 1)

Xét tam giác \(AIB\) có \(IH\) là đường cao.

Mà \(IH = {d_{\left( {I,d} \right)}} = \frac{{\left| {3.1 - 4.\left( { - 2} \right) - 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = 2\).

Ta có \[{S_{\Delta IAB}} = \frac{1}{2}IH.AB \Rightarrow AB = \frac{{2{S_{\Delta IAB}}}}{{IH}} = \frac{{2.4}}{2} = 4 \Rightarrow AH = 2\].

Xét tam giác \(AIH\) vuông tại \(H\) ta có:

\(IA = \sqrt {A{H^2} + I{H^2}}  = \sqrt {{2^2} + {2^2}}  = 2\sqrt 2 \).

Mà \(AI = R = 2\sqrt 2 \)

Phương trình đường tròn \(\left( C \right)\) là: \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP