Câu hỏi:

02/01/2026 24 Lưu

Phương trình tiếp tuyến \[d\] của đường tròn \[\left( C \right):{\left( {x + 2} \right)^2} + {\left( {y + 2} \right)^2} = 25\] tại điểm \[M\left( {2;\,1} \right)\] là

A. \[d:4x + 3y - 11 = 0\];   
B. \[d:4x + 3y + 14 = 0\];
C. \[d:3x - 4y - 2 = 0\]; 
D. \[d: - y + 1 = 0\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Đường tròn \[\left( C \right)\] có tâm \[I\left( { - 2; - 2} \right)\] nên tiếp tuyến tại \[M\] có VTPT là \[\vec n = \overrightarrow {IM}  = \left( {4;\,3} \right)\] nên có phương trình \[4\left( {x - 2} \right) + 3\left( {y - 1} \right) = 0 \Leftrightarrow 4x + 3y - 11 = 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Số cách chọn \(10\) bông trong đó có đúng \(3\) bông đỏ là: \(C_8^3.C_{11}^7 = 18\,\,480\).

Câu 2

A. \[M\left( {--1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\]; 
B. \[M\left( {1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\];
C. \[M\left( {1;\,2} \right)\] hoặc \[M\left( {1;\, - 2} \right)\];    
D. \[M\left( {1;\,4} \right)\] hoặc \[M\left( { - 1;\,4} \right)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Phương trình chính tắc của \[\left( P \right)\] có dạng: \[{y^2} = 2px\left( {p > 0} \right)\]

Vì \[\left( P \right)\] có đường chuẩn \[\Delta :x + 4 = 0\] nên \[\frac{p}{2} = 4 \Leftrightarrow \;p = 8\].

Do đó phương trình chính tắc của \[\left( P \right)\] là \[{y^2} = 16x\].

Gọi \[M\left( {{x_0};\,{y_0}} \right) \in \left( P \right)\], ta có:

\[d\left( {M;\,\Delta } \right) = MF = 5\]

\[ \Leftrightarrow \frac{{\left| {{x_0} + 4} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 5\]

\[ \Leftrightarrow \left| {{x_0} + 4} \right| = 5\]

\[ \Leftrightarrow \left[ \begin{array}{l}{x_0} + 4 = 5\\{x_0} + 4 =  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} =  - 9\end{array} \right.\]

+) Với \[{x_0} = 1\] có \[{y_0}^2 = 16.1 = 16 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{y_0} =  - 4}\\{{y_0} = 4}\end{array}} \right.\]

+) Với \[{x_0} =  - 9\] có \[{y_0}^2 = 16.\left( {--9} \right) = --144\](vô lí).

Vậy \[M\left( {1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\left\{ \begin{array}{l}a < 0\\\Delta  < 0\end{array} \right.\];  
B. \[\left\{ \begin{array}{l}a < 0\\\Delta  \le 0\end{array} \right.\];     
C. \[\left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\];   
D. \[\left\{ \begin{array}{l}a > 0\\\Delta  < 0\end{array} \right.\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Trùng nhau; 
B. Vuông góc với nhau;
C. Song song; 
D. Cắt nhau nhưng không vuông góc.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[216{a^4} + 96{a^3} + 81{a^2}\];
B. \[216{a^4} + 216{a^3} + 96{a^2}\];
C. \[81{a^4} + 216{a^3} + 96{a^2}\];   
D. \[81{a^4} + 216{a^3} + 216{a^2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[C_5^3.2\];           
B. \[ - C_5^3.2\];        
C. \[C_5^2{.2^2}\];    
D. \[ - C_5^2{.2^2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP