Câu hỏi:

02/01/2026 41 Lưu

Có bao nhiêu cách sắp xếp \[8\] viên bi đỏ khác nhau và \[8\] viên bi đen khác nhau thành một dãy sao cho hai viên bi cùng màu thì không được ở cạnh nhau?

A. \[36\];   
B. \[1625702400\];
C. \[72\]; 
D. \[3251404800\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Do hai viên bi cùng màu không được ớ cạnh nhau nên ta có trường hợp sau:

+) Phương án 1: Các bi đỏ ở vị trí lẻ.

Có \[8\] cách chọn bi đỏ ở vị trí số \[1\].

Có \[7\] cách chọn bi đỏ ở vị trí số \[3\].

….

Có \[1\] cách chọn bi đỏ ở vị trí số \[15\].

Suy ra có \[8.7.6...3.2.1\;\]cách xếp \[8\] bi đỏ. Tương tự có \[8.7.6...3.2.1\;\] cách xếp \[8\] bi đen.

Vậy có \[{\left( {8.7.6...3.2.1\;} \right)^2}\] cách xếp.

+) Phương án 2: Các bi đỏ ở vị trí chẵn ta cũng có cách xếp tương tự.

Vậy theo quy tắc cộng ta có \[{\left( {8!} \right)^2} + {\left( {8!} \right)^2} = 3251404800\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[M\left( {--1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\]; 
B. \[M\left( {1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\];
C. \[M\left( {1;\,2} \right)\] hoặc \[M\left( {1;\, - 2} \right)\];    
D. \[M\left( {1;\,4} \right)\] hoặc \[M\left( { - 1;\,4} \right)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Phương trình chính tắc của \[\left( P \right)\] có dạng: \[{y^2} = 2px\left( {p > 0} \right)\]

Vì \[\left( P \right)\] có đường chuẩn \[\Delta :x + 4 = 0\] nên \[\frac{p}{2} = 4 \Leftrightarrow \;p = 8\].

Do đó phương trình chính tắc của \[\left( P \right)\] là \[{y^2} = 16x\].

Gọi \[M\left( {{x_0};\,{y_0}} \right) \in \left( P \right)\], ta có:

\[d\left( {M;\,\Delta } \right) = MF = 5\]

\[ \Leftrightarrow \frac{{\left| {{x_0} + 4} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 5\]

\[ \Leftrightarrow \left| {{x_0} + 4} \right| = 5\]

\[ \Leftrightarrow \left[ \begin{array}{l}{x_0} + 4 = 5\\{x_0} + 4 =  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} =  - 9\end{array} \right.\]

+) Với \[{x_0} = 1\] có \[{y_0}^2 = 16.1 = 16 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{y_0} =  - 4}\\{{y_0} = 4}\end{array}} \right.\]

+) Với \[{x_0} =  - 9\] có \[{y_0}^2 = 16.\left( {--9} \right) = --144\](vô lí).

Vậy \[M\left( {1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\].

Câu 2

A. \[d':\left\{ \begin{array}{l}x =  - 1 - t\\y = 0\end{array} \right.\];       
B. \[d':\left\{ \begin{array}{l}x = 0\\y =  - 1 - 2023t\end{array} \right.\];
C. \[d':\left\{ \begin{array}{l}x =  - 1\\y =  - 1 + t\end{array} \right.\]; 
D. \[d':\left\{ \begin{array}{l}x =  - 1 - 2023t\\y =  - 1\end{array} \right.\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Khi hai đường thẳng có từ hai điểm chung thì chúng trùng nhau. Như vậy bài toán trở thành tìm đường thẳng trùng với đường thẳng đã biết. Ta có:

\[d:\left\{ \begin{array}{l}x = t\\y =  - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{{\vec u}_d} = \left( {1;\,0} \right)\\A\left( {0;\, - 1} \right) \in d\end{array} \right.\].

Vậy \[d'\] là đường thẳng đi qua \[A\left( {1;\,0} \right)\] và có VTCP cùng phương với \[{\vec u_d} = \left( {1;\,0} \right)\]. Suy ra chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[C_5^3.2\];           
B. \[ - C_5^3.2\];        
C. \[C_5^2{.2^2}\];    
D. \[ - C_5^2{.2^2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. các kết quả thuận lợi cho biến cố đó là rất ít;
B. các kết quả thuận lợi cho không gian mẫu là rất lớn;
C. trong một phép thử biến cố đó sẽ không xảy ra; 
D. trong một phép thử biến cố đó sẽ hoàn toàn xảy ra.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP