Có bao nhiêu cách sắp xếp \[8\] viên bi đỏ khác nhau và \[8\] viên bi đen khác nhau thành một dãy sao cho hai viên bi cùng màu thì không được ở cạnh nhau?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Do hai viên bi cùng màu không được ớ cạnh nhau nên ta có trường hợp sau:
+) Phương án 1: Các bi đỏ ở vị trí lẻ.
Có \[8\] cách chọn bi đỏ ở vị trí số \[1\].
Có \[7\] cách chọn bi đỏ ở vị trí số \[3\].
….
Có \[1\] cách chọn bi đỏ ở vị trí số \[15\].
Suy ra có \[8.7.6...3.2.1\;\]cách xếp \[8\] bi đỏ. Tương tự có \[8.7.6...3.2.1\;\] cách xếp \[8\] bi đen.
Vậy có \[{\left( {8.7.6...3.2.1\;} \right)^2}\] cách xếp.
+) Phương án 2: Các bi đỏ ở vị trí chẵn ta cũng có cách xếp tương tự.
Vậy theo quy tắc cộng ta có \[{\left( {8!} \right)^2} + {\left( {8!} \right)^2} = 3251404800\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Số cách chọn \(10\) bông trong đó có đúng \(3\) bông đỏ là: \(C_8^3.C_{11}^7 = 18\,\,480\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Phương trình chính tắc của \[\left( P \right)\] có dạng: \[{y^2} = 2px\left( {p > 0} \right)\]
Vì \[\left( P \right)\] có đường chuẩn \[\Delta :x + 4 = 0\] nên \[\frac{p}{2} = 4 \Leftrightarrow \;p = 8\].
Do đó phương trình chính tắc của \[\left( P \right)\] là \[{y^2} = 16x\].
Gọi \[M\left( {{x_0};\,{y_0}} \right) \in \left( P \right)\], ta có:
\[d\left( {M;\,\Delta } \right) = MF = 5\]
\[ \Leftrightarrow \frac{{\left| {{x_0} + 4} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 5\]
\[ \Leftrightarrow \left| {{x_0} + 4} \right| = 5\]
\[ \Leftrightarrow \left[ \begin{array}{l}{x_0} + 4 = 5\\{x_0} + 4 = - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} = - 9\end{array} \right.\]
+) Với \[{x_0} = 1\] có \[{y_0}^2 = 16.1 = 16 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{y_0} = - 4}\\{{y_0} = 4}\end{array}} \right.\]
+) Với \[{x_0} = - 9\] có \[{y_0}^2 = 16.\left( {--9} \right) = --144\](vô lí).
Vậy \[M\left( {1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.