Câu hỏi:

02/01/2026 36 Lưu

Xếp \[4\] người gồm An, Bình, Nhi, Trang ngồi vào \[6\] chỗ trên một bàn dài. Xác suất để bạn An luôn ngồi cạnh bạn Nhi bằng

A. \[\frac{2}{3}\];      
B. \[\frac{1}{4}\];       
C. \[\frac{1}{3}\];       
D. \[\frac{1}{6}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Số cách xếp khác nhau cho \[4\] người ngồi vào \[6\] chỗ trên một bàn dài là một chỉnh hợp chập \[4\] của \[6\] phần tử.

Suy ra \[n\left( \Omega  \right) = A_6^4 = 360\] cách.

Gọi \(A\) là biến cố để bạn An luôn ngồi cạnh bạn Nhi.

Vì An luôn ngồi cạnh bạn Nhi nên coi hai bạn này là một phần tử, trong phần tử này có \(2!\) cách xếp. Khi đó ta cần xếp \(3\) người vào \(5\) chỗ có \(A_5^3 = 60\) cách.

\( \Rightarrow n\left( A \right) = 2!.60 = 120\).

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{120}}{{360}} = \frac{1}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[M\left( {--1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\]; 
B. \[M\left( {1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\];
C. \[M\left( {1;\,2} \right)\] hoặc \[M\left( {1;\, - 2} \right)\];    
D. \[M\left( {1;\,4} \right)\] hoặc \[M\left( { - 1;\,4} \right)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Phương trình chính tắc của \[\left( P \right)\] có dạng: \[{y^2} = 2px\left( {p > 0} \right)\]

Vì \[\left( P \right)\] có đường chuẩn \[\Delta :x + 4 = 0\] nên \[\frac{p}{2} = 4 \Leftrightarrow \;p = 8\].

Do đó phương trình chính tắc của \[\left( P \right)\] là \[{y^2} = 16x\].

Gọi \[M\left( {{x_0};\,{y_0}} \right) \in \left( P \right)\], ta có:

\[d\left( {M;\,\Delta } \right) = MF = 5\]

\[ \Leftrightarrow \frac{{\left| {{x_0} + 4} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 5\]

\[ \Leftrightarrow \left| {{x_0} + 4} \right| = 5\]

\[ \Leftrightarrow \left[ \begin{array}{l}{x_0} + 4 = 5\\{x_0} + 4 =  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} =  - 9\end{array} \right.\]

+) Với \[{x_0} = 1\] có \[{y_0}^2 = 16.1 = 16 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{y_0} =  - 4}\\{{y_0} = 4}\end{array}} \right.\]

+) Với \[{x_0} =  - 9\] có \[{y_0}^2 = 16.\left( {--9} \right) = --144\](vô lí).

Vậy \[M\left( {1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\].

Câu 2

A. \[d':\left\{ \begin{array}{l}x =  - 1 - t\\y = 0\end{array} \right.\];       
B. \[d':\left\{ \begin{array}{l}x = 0\\y =  - 1 - 2023t\end{array} \right.\];
C. \[d':\left\{ \begin{array}{l}x =  - 1\\y =  - 1 + t\end{array} \right.\]; 
D. \[d':\left\{ \begin{array}{l}x =  - 1 - 2023t\\y =  - 1\end{array} \right.\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Khi hai đường thẳng có từ hai điểm chung thì chúng trùng nhau. Như vậy bài toán trở thành tìm đường thẳng trùng với đường thẳng đã biết. Ta có:

\[d:\left\{ \begin{array}{l}x = t\\y =  - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{{\vec u}_d} = \left( {1;\,0} \right)\\A\left( {0;\, - 1} \right) \in d\end{array} \right.\].

Vậy \[d'\] là đường thẳng đi qua \[A\left( {1;\,0} \right)\] và có VTCP cùng phương với \[{\vec u_d} = \left( {1;\,0} \right)\]. Suy ra chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[C_5^3.2\];           
B. \[ - C_5^3.2\];        
C. \[C_5^2{.2^2}\];    
D. \[ - C_5^2{.2^2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. các kết quả thuận lợi cho biến cố đó là rất ít;
B. các kết quả thuận lợi cho không gian mẫu là rất lớn;
C. trong một phép thử biến cố đó sẽ không xảy ra; 
D. trong một phép thử biến cố đó sẽ hoàn toàn xảy ra.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP