Xếp \[4\] người gồm An, Bình, Nhi, Trang ngồi vào \[6\] chỗ trên một bàn dài. Xác suất để bạn An luôn ngồi cạnh bạn Nhi bằng
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Số cách xếp khác nhau cho \[4\] người ngồi vào \[6\] chỗ trên một bàn dài là một chỉnh hợp chập \[4\] của \[6\] phần tử.
Suy ra \[n\left( \Omega \right) = A_6^4 = 360\] cách.
Gọi \(A\) là biến cố để bạn An luôn ngồi cạnh bạn Nhi.
Vì An luôn ngồi cạnh bạn Nhi nên coi hai bạn này là một phần tử, trong phần tử này có \(2!\) cách xếp. Khi đó ta cần xếp \(3\) người vào \(5\) chỗ có \(A_5^3 = 60\) cách.
\( \Rightarrow n\left( A \right) = 2!.60 = 120\).
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{120}}{{360}} = \frac{1}{3}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \[I\left( { - 2t + 3;\,t} \right) \in d\] là tâm của đường tròn \[\left( C \right)\].
Theo giả thiết, ta có:
\[d\left( {I,\,\Delta } \right) = R \Leftrightarrow \frac{{\left| { - 2t + 3 + 3t - 5} \right|}}{{\sqrt {{1^2} + {3^2}} }} = \frac{{2\sqrt {10} }}{5} \Leftrightarrow \frac{{\left| {t - 2} \right|}}{{\sqrt {{1^2} + {3^2}} }} = \frac{{2\sqrt {10} }}{5} \Leftrightarrow \left[ \begin{array}{l}t = 6\\t = - 2\end{array} \right.\]
+) Với \[t = 6 \Rightarrow I\left( { - 9;\,6} \right)\], mà \[R = \frac{{2\sqrt {10} }}{5}\] nên phương trình đường tròn là \[\left( C \right):{\left( {x + 9} \right)^2} + {\left( {y - 6} \right)^2} = \frac{8}{5}\].
+) Với \[t = - 2 \Rightarrow I\left( {7;\, - 2} \right)\], mà \[R = \frac{{2\sqrt {10} }}{5}\] nên phương trình đường tròn là \[\left( C \right):{\left( {x - 7} \right)^2} + {\left( {y + 2} \right)^2} = \frac{8}{5}\].
Lời giải
Hướng dẫn giải
Gọi số có 3 chữ số khác nhau là \[\overline {abc} \,\left( {a \ne 0} \right)\].
Chọn \[a\] có \[6\] cách chọn (vì \[a\] chọn tuý ý một trong các số từ \[1\] đến \[6\]).
Chọn \[b\] có \[5\] cách chọn (vì \[b \ne a\] nên \[b\] có thể chọn một trong các số từ \[1\] đến \[6\] nhưng không được chọn số mà \[a\] đã chọn).
Chọn \[c\] có \[4\] cách chọn (vì \[c \ne a,\,c \ne b\] nên \[c\] có thể chọn một trong các số từ \[1\] đến \[6\] nhưng không được chọn số mà \[a,\,b\] đã chọn).
Áp dụng quy tắc nhân, ta có \[6.5.4 = 120\] số có ba chữ số khác nhau được lập từ các số \[1;\,2;\,3;\,4;\,5;\,6\].
Vậy số phần tử của không gian mẫu là: \[n\left( \Omega \right) = 120\].
Gọi \[A\] là biến cố: “chọn được số tự nhiên có ba chữ số khác nhau sao cho số đó nhỏ hơn \[323\]”.
TH1: \(a = 3\), khi đó:
Nếu \(b < 2\) thì \(b \in \left\{ {0;1} \right\}\) hay \(b\) có \(2\) cách; \(c\) có \(5\) cách.
Do đó có: \(1.2.5 = 10\) số.
Nếu \(b = 2\) thì \(b\) có \(1\) cách; \(c\) phải nhỏ hơn \(3\) và khác \(b\) nên \(c \in \left\{ {0;1} \right\}\) hay \(c\) có \(2\) cách.
Do đó có: \(1.1.2 = 2\) số.
TH2: \(a < 3\) nên \(a \in \left\{ {1;2} \right\}\) hay \(a\) có hai cách chọn, khi đó:
\(b\) có \(6\) cách chọn, \(c\) có \(5\) cách chọn.
Do đó có \(2.6.5 = 60\) số.
Vậy có \(10 + 2 + 60 = 72\) số.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.