Câu hỏi:

05/01/2026 18 Lưu

Một tập hợp có \(n\) phần tử, cách sắp xếp có thứ tự \(n\) phần tử đó được gọi là

A. một hoán vị; 
B. một chỉnh hợp; 
C. một tổ hợp; 
D. một biến cố.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Một hoán vị của một tập hợp có \(n\) phần tử là cách sắp xếp có thứ tự \(n\) phần tử đó (với \(n\) là số tự nhiên, \(n \ge 1\)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left\{ \begin{array}{l}x = 1 + t\\y =  - 1 + 4t\end{array} \right.\);  
B. \(\left\{ \begin{array}{l}x = 1 + t\\y =  - 1 + 2t\end{array} \right.\);   
C. \(\left\{ \begin{array}{l}x = 2 + t\\y = 3 - t\end{array} \right.\);   
D. \(\left\{ \begin{array}{l}x = 2 + t\\y = 3 - 4t\end{array} \right.\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có: \(\overrightarrow {AB}  = \left( {1;\,\,4} \right)\)

Đường thẳng \(AB\) nhận \(\overrightarrow {AB}  = \left( {1;\,\,4} \right)\) làm vectơ chỉ phương và đi qua điểm \(A\left( {1;\,\, - 1} \right)\) nên ta có phương trình đường thẳng \(AB\) là: \(\left\{ \begin{array}{l}x = 1 + t\\y =  - 1 + 4t\end{array} \right.\).

Lời giải

Hướng dẫn giải

- Xếp để \(A\) và \(B\) luôn ngồi cạnh nhau, ta có:

Coi \(AB\) như \(1\) phần tử, trường hợp này có \(2\) cách thỏa mãn là \(AB\) và \(BA\).

Ứng với \(1\) phần tử \(AB\) và \(8\) đại biểu còn lại có \(9!\) cách xếp.

Do đó có \(9!.2!\) cách xếp.

- Xếp để \(A\) luôn ngồi cạnh cả \(B\) và \(C\) là:

Coi \(ABC\) như \(1\) phần tử, do đó có thể có \(2\) cách thỏa mãn là \(CAB\) và \(BAC\).

Ứng với \(1\) phần tử \(ABC\) và \(7\) đại biểu còn lại có \(8!\) cách xếp.

Do đó có \(8!.2!\) cách xếp.

Vậy có \(9!.2!\,\, - \,\,8!.2! = 645\,\,120\) cách xếp.

Câu 3

A. \(0^\circ \); 
B. \(180^\circ \);
C. \(90^\circ \); 
D. \(1^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP