Có \(15\) học sinh trong đó có hai bạn An và Bình được chia thành \(3\) nhóm (mỗi nhóm có \(5\) học sinh). Xác suất để An và Bình chung nhóm là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Gọi \(A\) là biến cố để An và Bình chung nhóm.
Ta có: \(n\left( \Omega \right) = C_{15}^5.C_{10}^5.C_5^5\).
Nếu An và Bình ở chung nhóm thứ nhất thì có: \(C_{13}^3.C_{10}^5.C_5^5\) cách.
Nếu An và Bình ở chung nhóm thứ hai thì có: \(C_{13}^3.C_{10}^5.C_5^5\) cách.
Nếu An và Bình ở chung nhóm thứ ba thì có: \(C_{13}^3.C_{10}^5.C_5^5\) cách.
\( \Rightarrow n\left( A \right) = 3.C_{13}^3.C_{10}^5.C_5^5\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{3.C_{13}^3.C_{10}^5.C_5^5}}{{C_{15}^5.C_{10}^5.C_5^5}} = \frac{2}{7}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi số tạo thành có dạng \[x = \overline {abc} \] với \[a,\,b,\,c\] đôi một khác nhau và lấy từ \[A\].
Chọn một vị trí \[a,\,b\] hoặc \[c\] cho số \[3\] có \[3\] cách chọn.
Chọn hai chữ số khác \[3\] từ \[A\] và sắp xếp vào hai vị trí còn lại của \[x\] có \[A_4^2\] cách chọn.
Theo quy tắc nhân có: \[3.A_4^2 = 36\] cách chọn.
Mỗi cách sắp xếp như trên cho ta một số thỏa mãn yêu cầu bài toán.
Vậy có \[36\] số cần tìm.
Lời giải
Hướng dẫn giải
Vì chọn \[10\] tấm thẻ trong \[30\] tấm thẻ nên số phần tử của không gian mẫu là: \[n\left( \Omega \right) = \;C_{30}^{10} = 30045015\].
Gọi \[A\] là biến cố lấy được \[5\] tấm thẻ mang số lẻ và \[5\] tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ chia hết cho \[10\].
Công đoạn 1, vì có \[15\] tấm thẻ đánh số lẻ và chỉ lấy ra \[5\] tấm thẻ nên có: \[C_{15}^5\; = 3\,\,003\] (cách).
Công đoạn 2, lấy \[5\] tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ chia hết cho \[10\], trong đó có \[3\] tấm thẻ đánh số chia hết cho \[10\] và lấy ra một tấm thẻ, có \[12\] tấm thẻ còn lại đánh số chẵn và lấy ra \[4\] tấm thẻ nên ta có: \[C_3^1.C\;_{12}^4 = 1485\] (cách).
Số phần tử của biến cố \[A\] là: \[3\,\,003.1\,\,485 = 4\,\,459\,\,455\] (cách).
Vậy xác suất của biến cố \[A\] là: \[P\left( A \right) = \;\frac{{4459455}}{{30045015}} = \frac{{99}}{{667}}\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.