Câu hỏi:

08/01/2026 15 Lưu

a) Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {y^2} = 9\]. Viết phương trình tiếp tuyến của đường tròn \[\left( C \right)\] biết tiếp tuyến song song với đường thẳng \[y = 2x - 1\].

b) Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) có \(A\left( {4; - 1} \right)\), phương trình đường cao kẻ từ \(B\) là \(\Delta :2x - 3y = 0\), phương trình trung tuyến đi qua đỉnh \(C\) là \(\Delta ':2x + 3y = 0\). Tìm tọa độ các đỉnh của tam giác.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi phương trình tiếp tuyến \[\left( \Delta  \right)\] song song với đường thẳng \[y = 2x - 1\] là \[y - 2x + c = 0\].

Đường tròn \[\left( C \right)\] có tâm \[I\left( {1;\,0} \right)\] và bán kính \[R = 3\].

Theo giả thiết, ta có: \[d\left( {I;\,\Delta } \right) = \frac{{\left| {n - 2} \right|}}{{\sqrt 5 }} = 3 \Leftrightarrow \left[ \begin{array}{l}c = 2 - 3\sqrt 5 \\c = 2 + 3\sqrt 5 \end{array} \right.\]

Vậy phương trình tiếp tuyến \[\left( \Delta  \right)\] là \[y - 2x + 2 - 3\sqrt 5  = 0\] hoặc \[y - 2x + 2 + 3\sqrt 5  = 0\].

b) Gọi \(M\) là trung điểm của đoạn thẳng \(AB\) nên \(M \in \Delta '\).

Đặt: \(M\left( {3t; - 2t} \right)\).

\( \Rightarrow B\left( {6t - 4; - 4t + 1} \right)\)

Mặt khác \(B \in \Delta \) nên ta có: \(2\left( {6t - 1} \right) - 3\left( { - 4t + 4} \right) = 0\)

\( \Leftrightarrow 24t - 11 = 0\)

\( \Leftrightarrow t = \frac{{11}}{{24}}\)

\( \Rightarrow B\left( { - \frac{5}{4}; - \frac{5}{6}} \right)\).

Đường thẳng \(\Delta :2x - 3y = 0\) có vectơ pháp tuyến là \(\overrightarrow n \left( {2; - 3} \right)\) nên có một vectơ chỉ phương là \(\overrightarrow u \left( {3;2} \right)\).

Vì \(\Delta  \bot AC\) nên đường thẳng \(AC\) nhận \(\overrightarrow u \left( {3;2} \right)\) làm một vectơ pháp tuyến và có phương trình là: \(3\left( {x - 4} \right) + 2\left( {y + 1} \right) = 0 \Leftrightarrow 3x + 2y - 10 = 0\).

Tọa độ điểm \(C\) là giao điểm của \(AC\) và \(\Delta '\) nên ta có:

\(\left\{ \begin{array}{l}2x + 3y = 0\\3x + 2y - 10 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y =  - 4\end{array} \right. \Rightarrow C\left( {6; - 4} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Vì hai học sinh ngồi đối diện nhau thì khác lớp nên mỗi cặp ghế đối diện nhau sẽ được xếp bởi một học sinh lớp A và một học sinh lớp B.

Số cách xếp \[5\] học sinh lớp A vào \[5\] cặp ghế là \[5!\] cách. Số cách xếp \[5\] học sinh lớp B vào \[5\] cặp ghế là \[5!\] cách. Số cách xếp chỗ ở mỗi cặp ghế là 2 cách.

Theo quy tắc nhân thì có \[{\left( {5!} \right)^2}{.2^5} = 460\,\,800\] cách.

Lời giải

Hướng dẫn giải

Gọi số tạo thành có dạng \[x = \overline {abc} \] với \[a,\,b,\,c\] đôi một khác nhau và lấy từ \[A\].

Chọn một vị trí \[a,\,b\] hoặc \[c\] cho số \[3\] có \[3\] cách chọn.

Chọn hai chữ số khác \[3\] từ \[A\] và sắp xếp vào hai vị trí còn lại của \[x\] có \[A_4^2\] cách chọn.

Theo quy tắc nhân có: \[3.A_4^2 = 36\] cách chọn.

Mỗi cách sắp xếp như trên cho ta một số thỏa mãn yêu cầu bài toán.

Vậy có \[36\] số cần tìm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{1}{2}\];         
B. \[\frac{9}{{16}}\];    
C. \[\frac{1}{{16}}\];    
D. \[\frac{{81}}{{16}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[1\];   
B. \[5\];  
C. \[10\]; 
D. \[2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP