Sắp xếp năm bạn học sinh An, Bình, Chi, Dũng, Lệ vào một chiếc ghế dài có \[5\] chỗ ngồi. Số cách sắp xếp sao cho bạn Chi luôn ngồi chính giữa là?
Sắp xếp năm bạn học sinh An, Bình, Chi, Dũng, Lệ vào một chiếc ghế dài có \[5\] chỗ ngồi. Số cách sắp xếp sao cho bạn Chi luôn ngồi chính giữa là?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Xếp bạn Chi ngồi giữa có \[1\] cách.
Số cách xếp bốn bạn An, Bình, Dũng, Lệ vào \[4\] chỗ còn lại là một hoán vị của \[4\] phần tử nên có: \[4! = 24\] cách.
Vậy có: \[1.24 = 24\] cách xếp thỏa mãn yêu cầu bài toán.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Vì hai học sinh ngồi đối diện nhau thì khác lớp nên mỗi cặp ghế đối diện nhau sẽ được xếp bởi một học sinh lớp A và một học sinh lớp B.
Số cách xếp \[5\] học sinh lớp A vào \[5\] cặp ghế là \[5!\] cách. Số cách xếp \[5\] học sinh lớp B vào \[5\] cặp ghế là \[5!\] cách. Số cách xếp chỗ ở mỗi cặp ghế là 2 cách.
Theo quy tắc nhân thì có \[{\left( {5!} \right)^2}{.2^5} = 460\,\,800\] cách.
Lời giải
Hướng dẫn giải
Gọi số tạo thành có dạng \[x = \overline {abc} \] với \[a,\,b,\,c\] đôi một khác nhau và lấy từ \[A\].
Chọn một vị trí \[a,\,b\] hoặc \[c\] cho số \[3\] có \[3\] cách chọn.
Chọn hai chữ số khác \[3\] từ \[A\] và sắp xếp vào hai vị trí còn lại của \[x\] có \[A_4^2\] cách chọn.
Theo quy tắc nhân có: \[3.A_4^2 = 36\] cách chọn.
Mỗi cách sắp xếp như trên cho ta một số thỏa mãn yêu cầu bài toán.
Vậy có \[36\] số cần tìm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.