Câu hỏi:

09/01/2026 45 Lưu

Cho phương trình \({x^2} + (m - 2)x + m - 3 = 0\) (\[x\] là ẩn số, \[m\]là tham số). Tìm \[m\] để phương trình có hai nghiệm phân biệt \({x_1},{x_2}\) sao cho biểu thức \(A = 2{x_1}{x_2} - {\left( {{x_1} - {x_2}} \right)^2} + 3\) đạt giá trị lớn nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[\Delta  = {\left( {m - 2} \right)^2} - 4(m - 3) = {m^2} - 8m + 16 = {\left( {m - 4} \right)^2} \ge 0\]

Để phương trình có hai nghiệm phân biệt khi \(\Delta  > 0 \Leftrightarrow {(m - 4)^2} > 0 \Leftrightarrow m \ne 4\)

Theo định lí vi-ét ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2 - m\\{x_1}{x_2} = m - 3\end{array} \right.\)

 \(A = 2{x_1}{x_2} - {\left( {{x_1} - {x_2}} \right)^2} + 3 = 6{x_1}{x_2} - {\left( {{x_1} + {x_2}} \right)^2} + 3\)\( =  - {m^2} + 10m - 19\)

\( \Rightarrow A = 6 - {(m - 5)^2} \le 6,\,\,\forall m\).

Dấu đẳng thức xảy ra khi \(m - 5 = 0 \Leftrightarrow m = 5\) (thỏa điều kiện \(m \ne 4\))

Vậy \(A\) đạt giá trị lớn nhất là \(Max\,A = 6\) khi \(m = 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình vuông \(ABCD\) nội tiếp đường tròn (ảnh 1)

Ta có \(AD = R\sqrt 2 \); \(DE = \frac{{R\sqrt 2 }}{3}\); \(AE = \sqrt {A{D^2} + D{E^2}} = \sqrt {2{R^2} + \frac{{2{R^2}}}{9}} = \frac{{2\sqrt 5 }}{3}R\) .

Tam giác \[DOM\] cân tại \[O\]\[OH \bot DM\]

Suy ra

\[ \Rightarrow DH = \frac{{R\sqrt {10} }}{{10}}\] \[ \Rightarrow DM = \frac{{R\sqrt {10} }}{5}\]

Ta có  (g-g) \( \Rightarrow \frac{{ME}}{{CE}} = \frac{{DE}}{{AE}} = \frac{{MD}}{{AC}}\)

\( \Rightarrow \frac{{ME}}{{AE}}.\frac{{DE}}{{CE}} = \frac{{M{D^2}}}{{A{C^2}}} = \frac{1}{{10}}\) \( \Rightarrow \frac{{ME}}{{AE}} = \frac{1}{5} \Rightarrow \frac{{ME}}{{AM}} = \frac{1}{6}\)

\(EI{\rm{//}}AB \Rightarrow \frac{{EI}}{{AB}} = \frac{{ME}}{{AM}} = \frac{1}{6}\) \( \Rightarrow EI = \frac{1}{6}AB = \frac{{R\sqrt 2 }}{6}\)\( \Rightarrow DI = DE + EI = \frac{{R\sqrt 2 }}{3} + \frac{{R\sqrt 2 }}{6} = \frac{{R\sqrt 2 }}{2}\).

Lời giải

Cho đường tròn (O) đường kính \[AB\]. Gọi \[H\] là điểm thuộc đoạn thẳng (ảnh 1)

a) Tứ giác \[MNAC\]\[\widehat {MNA} + \widehat {MCA} = {90^o} + {90^o} = {180^o}\]

nên \[MNAC\] là tứ giác nội tiếp.

\[ \Rightarrow \widehat {ACN} = \widehat {AMN}\].

b) Ta có: \[\widehat {ACN} = \widehat {AMN}\]

\[\widehat {AMN} = \widehat {ADC}\] (do MN//DC vì cùng vuông góc với AB)

\[AB \bot CD\] suy ra \[H\] là trung điểm của \[CD\].

Tam giác \[ACD\] là tam giác cân do \[AH\] vừa là đường cao, vừa là trung tuyến.

Suy ra \[\widehat {ADC} = \widehat {ACD}\]. Từ đó ta có: \[\widehat {ACN} = \widehat {ACD}\].

Ta có: \[\widehat {NCO} = \widehat {ACN} + \widehat {ACO} = \widehat {ACD} + \widehat {OAC = }{90^O}\]. Suy ra \[CN \bot CO\].

\( \Rightarrow \Delta NCO\) vuông tại \(C\) \( \Rightarrow C{H^2} = NH.OH\).

c) \[\widehat {ACE} = \widehat {EAC}\] (cùng bằng ).\( \Rightarrow \) \[\Delta AEC\] cân tại \[E\] \[ \Rightarrow E\] thuộc đường trung trực của\[AC\]. Gọi \[F = AE \cap BM\]

Ta có \[C\] thuộc đường tròn đường kính\[FA\]. Nên đường trung trực của \[AC\] phải cắt đường kính \[FA\] tại tâm của đường tròn này. Suy ra \[E\] là trung điểm của\[FA\].

Gọi \[K = CH \cap BE\]. Ta có: \[CH//FA\] nên \[\frac{{CK}}{{FE}} = \frac{{KH}}{{EA}}\left( { = \frac{{BK}}{{BE}}} \right)\].

\[FE = EA\] nên \[CK = KH\]. Vậy \[BE\] đi qua trung điểm của \[CH\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP