a) Giải phương trình \(\sqrt {x - 1} + \sqrt {2x - 1} = 5\).
b) Giải hệ phương trình \(\left\{ \begin{array}{l}x(x + 3)(2x + y) = 30\\{x^2} + 5x + y = 13\end{array} \right.\) .
a) Giải phương trình \(\sqrt {x - 1} + \sqrt {2x - 1} = 5\).
b) Giải hệ phương trình \(\left\{ \begin{array}{l}x(x + 3)(2x + y) = 30\\{x^2} + 5x + y = 13\end{array} \right.\) .
Quảng cáo
Trả lời:
Ta có \(\sqrt {x - 1} + \sqrt {2x - 1} = 5\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\3x - 2 + 2\sqrt {(x - 1)(2x - 1)} = 25\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\2\sqrt {2{x^2} - 3x + 1} = 27 - 3x\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 \le x \le 9\\4(2{x^2} - 3x + 1) = {(27 - 3x)^2}\end{array} \right.\).
\( \Leftrightarrow \left\{ \begin{array}{l}1 \le x \le 9\\{x^2} - 150x + 725 = 0\end{array} \right.\)\( \Leftrightarrow x = 5\).
b) Hệ đã cho tương đương với \(\left\{ \begin{array}{l}({x^2} + 3x)(2x + y) = 30\\{x^2} + 3x + 2x + y = 13\end{array} \right.\)
Suy ra \({x^2} + 3x\) và \(2x + y\) là 2 nghiệm của phương trình \({t^2} - 13t + 30 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 10\\t = 3\end{array} \right.\)
Vậy hệ đã cho tương đương với \(\left\{ \begin{array}{l}{x^2} + 3x = 10\,\,\\2x + y = 3\,\,\,\end{array} \right.\,(I)\) hoặc \(\left\{ \begin{array}{l}{x^2} + 3x = 3\,\\2x + y = 10\,\,\end{array} \right.(II)\)
Giải (I): \[{x^2} + 3x = 10 \Leftrightarrow {x^2} + 3x - 10 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2 \Rightarrow y = - 1\\x = - 5 \Rightarrow y = 13\end{array} \right.\]
Giải (II):\({x^2} + 3x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 3 + \sqrt {21} }}{2} \Rightarrow y = 13 - \sqrt {21} \\x = \frac{{ - 3 - \sqrt {21} }}{2} \Rightarrow y = 13 + \sqrt {21} \end{array} \right.\)
Vậy hệ đã cho có 4 nghiệm \(\left( {\frac{{ - 3 + \sqrt {21} }}{2};13 - \sqrt {21} } \right)\);\(\left( {\frac{{ - 3 - \sqrt {21} }}{2};13 + \sqrt {21} } \right)\);\(\left( {2; - 1} \right)\);\(\left( { - 5;13} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[\Delta = {\left( {m - 2} \right)^2} - 4(m - 3) = {m^2} - 8m + 16 = {\left( {m - 4} \right)^2} \ge 0\]
Để phương trình có hai nghiệm phân biệt khi \(\Delta > 0 \Leftrightarrow {(m - 4)^2} > 0 \Leftrightarrow m \ne 4\)
Theo định lí vi-ét ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2 - m\\{x_1}{x_2} = m - 3\end{array} \right.\)
\(A = 2{x_1}{x_2} - {\left( {{x_1} - {x_2}} \right)^2} + 3 = 6{x_1}{x_2} - {\left( {{x_1} + {x_2}} \right)^2} + 3\)\( = - {m^2} + 10m - 19\)
\( \Rightarrow A = 6 - {(m - 5)^2} \le 6,\,\,\forall m\).
Dấu đẳng thức xảy ra khi \(m - 5 = 0 \Leftrightarrow m = 5\) (thỏa điều kiện \(m \ne 4\))
Vậy \(A\) đạt giá trị lớn nhất là \(Max\,A = 6\) khi \(m = 5\).
Lời giải
a) Ta có: \[2ab \le {a^2} + {b^2} \Leftrightarrow {\left( {a + b} \right)^2} \le 2\left( {{a^2} + {b^2}} \right) \Leftrightarrow a + b \le \sqrt {2\left( {{a^2} + {b^2}} \right)} \].
b) \[P = \frac{{2ab}}{{a + b + 2}} = \frac{{{{\left( {a + b} \right)}^2} - \left( {{a^2} + {b^2}} \right)}}{{a + b + 2}} = \frac{{{{\left( {a + b} \right)}^2} - 4 - 2}}{{a + b + 2}} = a + b - 2 - \frac{2}{{a + b + 2}}\]
\[a + b \le 2\sqrt 3 \Rightarrow a + b + 2 \le 2 + 2\sqrt 3 \]\[ \Rightarrow \frac{2}{{a + b + 2}} \ge \frac{1}{{1 + \sqrt 3 }}\]
Vậy \[P \le 2\sqrt 3 - 2 - \frac{1}{{1 + \sqrt 3 }} = \frac{{ - 3 + 3\sqrt 3 }}{2}\].
Dấu xảy ra khi \[\left\{ \begin{array}{l}{a^2} + {b^2} = 6\\a = b\end{array} \right. \Leftrightarrow a = b = \sqrt 3 \].
Vậy \[Ma{\rm{x}}\,P = \frac{{ - 3 + 3\sqrt 3 }}{2}\] khi \[a = b = \sqrt 3 \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.