Cho hình vuông \(ABCD\) nội tiếp đường tròn \(\left( {O;R} \right)\), trên dây cung \(DC\) lấy điểm \(E\) sao cho \(DC = 3DE\), đường thẳng \(AE\) cắt cung nhỏ \(DC\) tại \(M\). Gọi \(I\) là giao điểm của \(BM\) và \(DC\), vẽ \(OH\) vuông góc với \(DM\) tại \(H\). Tính độ dài các đoạn thẳng \(AE\) và \[DI\] theo \[R\].
Cho hình vuông \(ABCD\) nội tiếp đường tròn \(\left( {O;R} \right)\), trên dây cung \(DC\) lấy điểm \(E\) sao cho \(DC = 3DE\), đường thẳng \(AE\) cắt cung nhỏ \(DC\) tại \(M\). Gọi \(I\) là giao điểm của \(BM\) và \(DC\), vẽ \(OH\) vuông góc với \(DM\) tại \(H\). Tính độ dài các đoạn thẳng \(AE\) và \[DI\] theo \[R\].
Quảng cáo
Trả lời:
Ta có \(AD = R\sqrt 2 \); \(DE = \frac{{R\sqrt 2 }}{3}\); \(AE = \sqrt {A{D^2} + D{E^2}} = \sqrt {2{R^2} + \frac{{2{R^2}}}{9}} = \frac{{2\sqrt 5 }}{3}R\) .
Tam giác \[DOM\] cân tại \[O\] mà \[OH \bot DM\]
Suy ra
\[ \Rightarrow DH = \frac{{R\sqrt {10} }}{{10}}\] \[ \Rightarrow DM = \frac{{R\sqrt {10} }}{5}\]
Ta có (g-g) \( \Rightarrow \frac{{ME}}{{CE}} = \frac{{DE}}{{AE}} = \frac{{MD}}{{AC}}\)
\( \Rightarrow \frac{{ME}}{{AE}}.\frac{{DE}}{{CE}} = \frac{{M{D^2}}}{{A{C^2}}} = \frac{1}{{10}}\) \( \Rightarrow \frac{{ME}}{{AE}} = \frac{1}{5} \Rightarrow \frac{{ME}}{{AM}} = \frac{1}{6}\)
\(EI{\rm{//}}AB \Rightarrow \frac{{EI}}{{AB}} = \frac{{ME}}{{AM}} = \frac{1}{6}\) \( \Rightarrow EI = \frac{1}{6}AB = \frac{{R\sqrt 2 }}{6}\)\( \Rightarrow DI = DE + EI = \frac{{R\sqrt 2 }}{3} + \frac{{R\sqrt 2 }}{6} = \frac{{R\sqrt 2 }}{2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[\Delta = {\left( {m - 2} \right)^2} - 4(m - 3) = {m^2} - 8m + 16 = {\left( {m - 4} \right)^2} \ge 0\]
Để phương trình có hai nghiệm phân biệt khi \(\Delta > 0 \Leftrightarrow {(m - 4)^2} > 0 \Leftrightarrow m \ne 4\)
Theo định lí vi-ét ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2 - m\\{x_1}{x_2} = m - 3\end{array} \right.\)
\(A = 2{x_1}{x_2} - {\left( {{x_1} - {x_2}} \right)^2} + 3 = 6{x_1}{x_2} - {\left( {{x_1} + {x_2}} \right)^2} + 3\)\( = - {m^2} + 10m - 19\)
\( \Rightarrow A = 6 - {(m - 5)^2} \le 6,\,\,\forall m\).
Dấu đẳng thức xảy ra khi \(m - 5 = 0 \Leftrightarrow m = 5\) (thỏa điều kiện \(m \ne 4\))
Vậy \(A\) đạt giá trị lớn nhất là \(Max\,A = 6\) khi \(m = 5\).
Lời giải
a) Ta có: \[2ab \le {a^2} + {b^2} \Leftrightarrow {\left( {a + b} \right)^2} \le 2\left( {{a^2} + {b^2}} \right) \Leftrightarrow a + b \le \sqrt {2\left( {{a^2} + {b^2}} \right)} \].
b) \[P = \frac{{2ab}}{{a + b + 2}} = \frac{{{{\left( {a + b} \right)}^2} - \left( {{a^2} + {b^2}} \right)}}{{a + b + 2}} = \frac{{{{\left( {a + b} \right)}^2} - 4 - 2}}{{a + b + 2}} = a + b - 2 - \frac{2}{{a + b + 2}}\]
\[a + b \le 2\sqrt 3 \Rightarrow a + b + 2 \le 2 + 2\sqrt 3 \]\[ \Rightarrow \frac{2}{{a + b + 2}} \ge \frac{1}{{1 + \sqrt 3 }}\]
Vậy \[P \le 2\sqrt 3 - 2 - \frac{1}{{1 + \sqrt 3 }} = \frac{{ - 3 + 3\sqrt 3 }}{2}\].
Dấu xảy ra khi \[\left\{ \begin{array}{l}{a^2} + {b^2} = 6\\a = b\end{array} \right. \Leftrightarrow a = b = \sqrt 3 \].
Vậy \[Ma{\rm{x}}\,P = \frac{{ - 3 + 3\sqrt 3 }}{2}\] khi \[a = b = \sqrt 3 \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.