a) Cho \(A = 2\left( {{1^{2023}} + {2^{2023}} + ... + {{2022}^{2023}}} \right)\). Chứng minh rằng \[A\] chia hết cho \[2022\].
b) Tìm các nghiệm nguyên của phương trình \(2{x^2} + 5{y^2} + 4x = 21\).
a) Cho \(A = 2\left( {{1^{2023}} + {2^{2023}} + ... + {{2022}^{2023}}} \right)\). Chứng minh rằng \[A\] chia hết cho \[2022\].
b) Tìm các nghiệm nguyên của phương trình \(2{x^2} + 5{y^2} + 4x = 21\).
Quảng cáo
Trả lời:
a) Với 2 số nguyên dương \[a,b\] bất kì ta có: \({a^{2023}} + {b^{2023}} \vdots (a + b)\).
Ta có:
\(\begin{array}{l}2\left[ {{1^{2023}} + {{2021}^{2023}}} \right] \vdots 2022\\2\left[ {{2^{2023}} + {{2020}^{2023}}} \right] \vdots 2022\\...\\2\left[ {{{1010}^{2023}} + {{1012}^{2023}}} \right] \vdots 2022\end{array}\)
Và \({2.1011^{2023}} \vdots 2022\) ; \({2022^{2023}} \vdots 2022\)
Suy ra \(A = 2\left( {{1^{2023}} + {2^{2023}} + ... + {{2022}^{2023}}} \right) \vdots 2022\)
b) Tìm các nghiệm nguyên của phương trình: \(2{x^2} + 5{y^2} + 4x = 21\) (1)
\(2{x^2} + 5{y^2} + 4x = 21 \Leftrightarrow 2{\left( {x + 1} \right)^2} = 5\left( {4 - {y^2}} \right)\)
Mà \(2{\left( {x + 1} \right)^2} \ge 0\)\( \Rightarrow 5\left( {4 - {y^2}} \right) \ge 0 \Leftrightarrow {y^2} \le 4 \Rightarrow {y^2} \in \left\{ {1;4} \right\}\)
+ \({y^2} = 1\)vào (1) tìm được \(2{x^2} + 4x - 16 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = - 4}\end{array}} \right.\)
+ \({y^2} = 4\)vào (1) tìm được \(2{x^2} + 4x - 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{ - 2 + \sqrt 6 }}{2}}\\{x = \frac{{ - 2 - \sqrt 6 }}{2}}\end{array}} \right.\)
Vậy các nghiệm nguyên của phương trình là: \[\left( {2,1} \right);\left( {2, - 1} \right);\left( { - 4,1} \right);\left( { - 4, - 1} \right)\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(AD = R\sqrt 2 \); \(DE = \frac{{R\sqrt 2 }}{3}\); \(AE = \sqrt {A{D^2} + D{E^2}} = \sqrt {2{R^2} + \frac{{2{R^2}}}{9}} = \frac{{2\sqrt 5 }}{3}R\) .
Tam giác \[DOM\] cân tại \[O\] mà \[OH \bot DM\]
Suy ra
\[ \Rightarrow DH = \frac{{R\sqrt {10} }}{{10}}\] \[ \Rightarrow DM = \frac{{R\sqrt {10} }}{5}\]
Ta có (g-g) \( \Rightarrow \frac{{ME}}{{CE}} = \frac{{DE}}{{AE}} = \frac{{MD}}{{AC}}\)
\( \Rightarrow \frac{{ME}}{{AE}}.\frac{{DE}}{{CE}} = \frac{{M{D^2}}}{{A{C^2}}} = \frac{1}{{10}}\) \( \Rightarrow \frac{{ME}}{{AE}} = \frac{1}{5} \Rightarrow \frac{{ME}}{{AM}} = \frac{1}{6}\)
\(EI{\rm{//}}AB \Rightarrow \frac{{EI}}{{AB}} = \frac{{ME}}{{AM}} = \frac{1}{6}\) \( \Rightarrow EI = \frac{1}{6}AB = \frac{{R\sqrt 2 }}{6}\)\( \Rightarrow DI = DE + EI = \frac{{R\sqrt 2 }}{3} + \frac{{R\sqrt 2 }}{6} = \frac{{R\sqrt 2 }}{2}\).
Lời giải
Ta có \[\Delta = {\left( {m - 2} \right)^2} - 4(m - 3) = {m^2} - 8m + 16 = {\left( {m - 4} \right)^2} \ge 0\]
Để phương trình có hai nghiệm phân biệt khi \(\Delta > 0 \Leftrightarrow {(m - 4)^2} > 0 \Leftrightarrow m \ne 4\)
Theo định lí vi-ét ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2 - m\\{x_1}{x_2} = m - 3\end{array} \right.\)
\(A = 2{x_1}{x_2} - {\left( {{x_1} - {x_2}} \right)^2} + 3 = 6{x_1}{x_2} - {\left( {{x_1} + {x_2}} \right)^2} + 3\)\( = - {m^2} + 10m - 19\)
\( \Rightarrow A = 6 - {(m - 5)^2} \le 6,\,\,\forall m\).
Dấu đẳng thức xảy ra khi \(m - 5 = 0 \Leftrightarrow m = 5\) (thỏa điều kiện \(m \ne 4\))
Vậy \(A\) đạt giá trị lớn nhất là \(Max\,A = 6\) khi \(m = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.