Cho biểu thức \[A = \frac{x}{{\sqrt x - 1}} + \frac{2}{{\sqrt x - 2}} + \frac{{2x - x\sqrt x - 2}}{{x - 3\sqrt x + 2}}\] (với \(x \ge 0,x \ne 1\), và \(x \ne 4\))
a) Rút gọn biểu thức A.
b) Tính giá trị biểu thức A tại \(x = 3 + 2\sqrt 2 \).
Cho biểu thức \[A = \frac{x}{{\sqrt x - 1}} + \frac{2}{{\sqrt x - 2}} + \frac{{2x - x\sqrt x - 2}}{{x - 3\sqrt x + 2}}\] (với \(x \ge 0,x \ne 1\), và \(x \ne 4\))
a) Rút gọn biểu thức A.
b) Tính giá trị biểu thức A tại \(x = 3 + 2\sqrt 2 \).
Quảng cáo
Trả lời:
a) Rút gọn biểu thức
Ta có:
\(\begin{array}{l}A = \frac{{x(\sqrt x - 2) + 2(\sqrt x - 1) + (2x - x\sqrt x - 2)}}{{(\sqrt x - 1)(\sqrt x - 2)}}\\ = \frac{{x\sqrt x - 2x + 2\sqrt x - 2 + 2x - x\sqrt x - 2}}{{(\sqrt x - 1)(\sqrt x - 2)}}\\ = \frac{{2\sqrt x - 4}}{{(\sqrt x - 1)(\sqrt x - 2)}} = \frac{{2(\sqrt x - 2)}}{{(\sqrt x - 1)(\sqrt x - 2)}} = \frac{2}{{\sqrt x - 1}}\end{array}\)
b)
Ta có \(x = 3 + 2\sqrt 2 = {(\sqrt 2 + 1)^2}\)
Do đó: \(A = \frac{2}{{\sqrt {{{(\sqrt 2 + 1)}^2}} - 1}} = \frac{2}{{\sqrt 2 + 1 - 1}} = \sqrt 2 \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hai tam giác vuông \(ABM\) và \(ADN\), ta có:
\(AB = AD\),\(\widehat {BAM} = \widehat {DAN}\) (hai góc nhọn có cạnh tương ứng vuông góc)
Do đó tam giác \(\Delta ABM = \Delta ADN\) (cạnh góc vuông – góc nhọn). Suy ra, \(DN = BM\) (1).
Qua \(M\) kẻ đường thẳng song song \(ID\) cắt \(NC\) tại \[E\].
Xét tam giác \(MNE\):
Do \(I\) là trung điểm của \(MN\) và \(ID\,{\rm{//}}\,ME\), nên \(D\) là trung điểm của \(NE\). Vì thế \(DE = DN = BM\) (theo (1)). Suy ra, \(MC = CE\) (2)
Do \(I,D\) tương ứng là trung điểm của \(MN,\,NE\), nên \(ID\) là đường trung bình của tam giác. Do đó, \(DI = \frac{1}{2}EM\).
Xét tam giác vuông (tại C) MCE, theo định lí Pitago, ta có:
\(EM = \sqrt {M{C^2} + C{E^2}} = \sqrt {2M{C^2}} \)(do (2))
\( = \sqrt 2 MC = \sqrt 2 \left( {BC - BM} \right) = \sqrt 2 \left( {8 - 5} \right) = 3\sqrt 2 \).
Vì thế \(DI = \frac{{3\sqrt 2 }}{2}\).
Lời giải
a)Với giả thuyết \(\widehat {{O_1}A{O_2}}\) là góc tù, ta có thế hình như ở trên.
Xét \(\left( {{O_1}} \right)\), ta có:
\(\widehat {AKM} = \widehat {MAB}\) (góc nọi tiếp và góc tạo bởi tiếp tuyến và một dây, cùng chắn cung AM không chứa D). (1)
Xét \(\left( {{O_2}} \right)\), ta có:
\(\widehat {MLB} = \widehat {MAB}\) (hai góc nội tiếp cùng chắn cung MB không chứa A). (2)
Từ (1) và (2), suy ra, \(\widehat {AKM} = \widehat {MLB}\).
Do đó, \(AK\,{\rm{//}}\,LB\) (vì có hai góc ở vị trí so le trong bằng nhau).
b)Xét \(\left( {{O_1}} \right)\) ta có:
\(\widehat {MDA} = \widehat {MAB}\) (góc nội tiếp và góc tạo bởi tiếp tuyến và một dây, cùng chắn cung AM không chứa D). (3)
Xét \(\left( {{O_2}} \right)\) ta có
\(\widehat {MAD} = \widehat {MBA}\) (góc tạo bởi tiếp tuyến và một dây, góc nội tiếp, cùng chắn cung AM không chứa B) (4)
Từ (3) và (4), suy ra, .
Do đó, \(\frac{{MA}}{{MD}} = \frac{{MB}}{{MA}}\); mà \(MC = MA\)(gt), nên \(\frac{{MC}}{{MD}} = \frac{{MB}}{{MC}}\). (5)
Do trong một tam giác, mỗi góc ngoài bằng tổng hai góc trong không kề với nó, nên cộng (3) và (4), vế theo vế, ta được:
\(\widehat {DMC} = \widehat {CMB}\) (6)
Từ (5) và (6), suy ra, .
Do đó, \(\widehat {DCM} = \widehat {CBM}\).
Vì thế, ta có:
\(\begin{array}{l}\widehat {DCB} = \widehat {DCM} + \widehat {MCB} = \widehat {CBM} + \widehat {MCB}\\ = 180^\circ - \widehat {BMC} = 180^\circ - (\widehat {BAM} + \widehat {MBA})\\ = 180^\circ - (\widehat {BAM} + \widehat {MAD})\quad ({\rm{do}}(4))\\ = 180^\circ - \widehat {BAD}\end{array}\)
Suy ra, \(\widehat {BAD} + \widehat {DCB} = 180^\circ \). Do đó, \(ABCD\) là tứ giác nội tiếp.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.