Tìm tất cả các số thực \(a,b\) sao cho phương trình (ẩn \(x\)) \({x^2} + ax + b = 0\) có hai nghiệm là \(\frac{a}{3}\) và \(\frac{1}{{a + 2}}\).
Tìm tất cả các số thực \(a,b\) sao cho phương trình (ẩn \(x\)) \({x^2} + ax + b = 0\) có hai nghiệm là \(\frac{a}{3}\) và \(\frac{1}{{a + 2}}\).
Quảng cáo
Trả lời:
Theo định lí Vi-ét (thuận và đảo), \(a,b\) là các số thực thỏa mãn yêu cầu đề bài khi và chỉ khi :
\[\left\{ {\begin{array}{*{20}{l}}{a \ne - 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)}\\{\frac{a}{3} + \frac{1}{{a + 2}} = - a\,\,(2)}\\{\frac{a}{3} \cdot \frac{1}{{a + 2}} = b\,\,\,\,\,\,\,\,(3)}\end{array}} \right.\]
Với \(a\) thỏa mãn (1) ta có \({\rm{ (2) }} \Leftrightarrow 4{a^2} + 8a + 3 = 0 \Leftrightarrow a = - \frac{1}{2},a = - \frac{3}{2}\)
Thay \(a = \frac{{ - 1}}{2}\) vào (3) ta được \(b = \frac{{ - 1}}{9}\)
Thay \(a = \frac{{ - 3}}{2}\) vào (3) ta được \(b = - 1\).
Vậy có tất cả hai cặp số thực \(a,b\) thỏa mãn yêu cầu là \(\left( {\frac{{ - 1}}{2};\frac{{ - 1}}{9}} \right),\left( {\frac{{ - 3}}{2}; - 1} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hai tam giác vuông \(ABM\) và \(ADN\), ta có:
\(AB = AD\),\(\widehat {BAM} = \widehat {DAN}\) (hai góc nhọn có cạnh tương ứng vuông góc)
Do đó tam giác \(\Delta ABM = \Delta ADN\) (cạnh góc vuông – góc nhọn). Suy ra, \(DN = BM\) (1).
Qua \(M\) kẻ đường thẳng song song \(ID\) cắt \(NC\) tại \[E\].
Xét tam giác \(MNE\):
Do \(I\) là trung điểm của \(MN\) và \(ID\,{\rm{//}}\,ME\), nên \(D\) là trung điểm của \(NE\). Vì thế \(DE = DN = BM\) (theo (1)). Suy ra, \(MC = CE\) (2)
Do \(I,D\) tương ứng là trung điểm của \(MN,\,NE\), nên \(ID\) là đường trung bình của tam giác. Do đó, \(DI = \frac{1}{2}EM\).
Xét tam giác vuông (tại C) MCE, theo định lí Pitago, ta có:
\(EM = \sqrt {M{C^2} + C{E^2}} = \sqrt {2M{C^2}} \)(do (2))
\( = \sqrt 2 MC = \sqrt 2 \left( {BC - BM} \right) = \sqrt 2 \left( {8 - 5} \right) = 3\sqrt 2 \).
Vì thế \(DI = \frac{{3\sqrt 2 }}{2}\).
Lời giải
a)Vì \(m,\,p\) là các số nguyên tố nên \(mp \ge 4\). Do đó, \(r \ge 5\). Mà \(r\) là nguyên tố nên r là số lẻ.
Vì thế, \(mp = r - 1\) là một số chẵn. Suy ra, trong hai số \(m,\,p\), có ít nhất một số bằng 2.
- Nếu \(m = 2\) thì \(r = 2p + 1\). Do đó:
\({p^2} + r = {p^2} + 2p + 1 = {\left( {p + 1} \right)^2}\),
Là một số chính phương.
- Nếu \(p = 2\) thì \(r = 2m + 1\). Do đó
\({m^2} + r = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2}\) là một số chính phương
b)Giả sử q là số nguyên tố thỏa mãn yêu cầu đề bài. Khi đó, sẽ tồn tại các số nguyên dương
\[n,\,k\] sao cho \({n^2} + 22q = {11^k}\). (1)
Do \({n^2} + 22q > 11\) nên \({11^k} > 11\); suy ra \(k \ge 2\). Vì thế, từ (1), ta có:
\(\left( {{n^2} + 22q} \right) \vdots {11^2}\). (2)
Do \(22q \vdots 11\) nên từ (1) suy ra, \({n^2} \vdots 11\); mà 11 là số nguyên tố, nên \({n^2} \vdots {11^2}\). (3)
Từ (2) và (3) suy ra, \(22q \vdots {11^2}\). Do đó, \[q \vdots 11\]; mà \[q\] là số nguyên tố nên \(q = 11\).
Ngược lại, với \(q = 11\), ta có: \({33^2} + 22.11 = {11^2}.\left( {9 + 2} \right) = {11^3}\).
Vậy có duy nhất số q thỏa yêu cầu của đề bài là \(q = 11\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.