Câu hỏi:

10/01/2026 34 Lưu

Tìm tất cả các số thực \(a,b\) sao cho phương trình (ẩn \(x\)) \({x^2} + ax + b = 0\) có hai nghiệm là \(\frac{a}{3}\) và \(\frac{1}{{a + 2}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo định lí Vi-ét (thuận và đảo), \(a,b\) là các số thực thỏa mãn yêu cầu đề bài khi và chỉ khi :

\[\left\{ {\begin{array}{*{20}{l}}{a \ne - 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)}\\{\frac{a}{3} + \frac{1}{{a + 2}} = - a\,\,(2)}\\{\frac{a}{3} \cdot \frac{1}{{a + 2}} = b\,\,\,\,\,\,\,\,(3)}\end{array}} \right.\]

Với \(a\) thỏa mãn (1) ta có \({\rm{ (2) }} \Leftrightarrow 4{a^2} + 8a + 3 = 0 \Leftrightarrow a = - \frac{1}{2},a = - \frac{3}{2}\)

Thay \(a = \frac{{ - 1}}{2}\) vào (3) ta được \(b = \frac{{ - 1}}{9}\)

Thay \(a = \frac{{ - 3}}{2}\) vào (3) ta được \(b = - 1\).

Vậy có tất cả hai cặp số thực \(a,b\) thỏa mãn yêu cầu là \(\left( {\frac{{ - 1}}{2};\frac{{ - 1}}{9}} \right),\left( {\frac{{ - 3}}{2}; - 1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình vuông \(ABCD\) có cạnh bằng 8. Trên cạnh \(BC\), lấy điểm \(M\) sao cho (ảnh 1)

Xét hai tam giác vuông \(ABM\)\(ADN\), ta có:

\(AB = AD\),\(\widehat {BAM} = \widehat {DAN}\) (hai góc nhọn có cạnh tương ứng vuông góc)

Do đó tam giác \(\Delta ABM = \Delta ADN\) (cạnh góc vuông – góc nhọn). Suy ra, \(DN = BM\) (1).

Qua \(M\) kẻ đường thẳng song song \(ID\) cắt \(NC\) tại \[E\].

Xét tam giác \(MNE\):

Do \(I\) là trung điểm của \(MN\)\(ID\,{\rm{//}}\,ME\), nên \(D\) là trung điểm của \(NE\). Vì thế \(DE = DN = BM\) (theo (1)). Suy ra, \(MC = CE\) (2)

Do \(I,D\) tương ứng là trung điểm của \(MN,\,NE\), nên \(ID\) là đường trung bình của tam giác. Do đó, \(DI = \frac{1}{2}EM\).

Xét tam giác vuông (tại C) MCE, theo định lí Pitago, ta có:

\(EM = \sqrt {M{C^2} + C{E^2}} = \sqrt {2M{C^2}} \)(do (2))

\( = \sqrt 2 MC = \sqrt 2 \left( {BC - BM} \right) = \sqrt 2 \left( {8 - 5} \right) = 3\sqrt 2 \).

Vì thế \(DI = \frac{{3\sqrt 2 }}{2}\).

Lời giải

a)Vì \(m,\,p\) là các số nguyên tố nên \(mp \ge 4\). Do đó, \(r \ge 5\). Mà \(r\) là nguyên tố nên r là số lẻ.

Vì thế, \(mp = r - 1\) là một số chẵn. Suy ra, trong hai số \(m,\,p\), có ít nhất một số bằng 2.

- Nếu \(m = 2\) thì \(r = 2p + 1\). Do đó:

\({p^2} + r = {p^2} + 2p + 1 = {\left( {p + 1} \right)^2}\),

Là một số chính phương.

- Nếu \(p = 2\) thì \(r = 2m + 1\). Do đó

\({m^2} + r = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2}\) là một số chính phương

b)Giả sử q là số nguyên tố thỏa mãn yêu cầu đề bài. Khi đó, sẽ tồn tại các số nguyên dương

\[n,\,k\] sao cho \({n^2} + 22q = {11^k}\). (1)

Do \({n^2} + 22q > 11\) nên \({11^k} > 11\); suy ra \(k \ge 2\). Vì thế, từ (1), ta có:

\(\left( {{n^2} + 22q} \right) \vdots {11^2}\). (2)

Do \(22q \vdots 11\) nên từ (1) suy ra, \({n^2} \vdots 11\); mà 11 là số nguyên tố, nên \({n^2} \vdots {11^2}\). (3)

Từ (2) và (3) suy ra, \(22q \vdots {11^2}\). Do đó,  \[q \vdots 11\]; mà \[q\] là số nguyên tố nên \(q = 11\).

Ngược lại, với \(q = 11\), ta có: \({33^2} + 22.11 = {11^2}.\left( {9 + 2} \right) = {11^3}\).

Vậy có duy nhất số q thỏa yêu cầu của đề bài là \(q = 11\).