Câu hỏi:

10/01/2026 11 Lưu

a) Cho \(m,\,p,\,r\) là các số nguyên tố thỏa mãn \(mp + 1 = r\). Chứng minh rằng \({m^2} + r\) hoặc \({p^2} + r\) là số chính phương.

b) Tìm tất cả các số nguyên tố \(q\), sao cho tồn tại số nguyên dương \(n\) để \({n^2} + 22q\) là một lũy thừa với số mũ nguyên dương của 11.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a)Vì \(m,\,p\) là các số nguyên tố nên \(mp \ge 4\). Do đó, \(r \ge 5\). Mà \(r\) là nguyên tố nên r là số lẻ.

Vì thế, \(mp = r - 1\) là một số chẵn. Suy ra, trong hai số \(m,\,p\), có ít nhất một số bằng 2.

- Nếu \(m = 2\) thì \(r = 2p + 1\). Do đó:

\({p^2} + r = {p^2} + 2p + 1 = {\left( {p + 1} \right)^2}\),

Là một số chính phương.

- Nếu \(p = 2\) thì \(r = 2m + 1\). Do đó

\({m^2} + r = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2}\) là một số chính phương

b)Giả sử q là số nguyên tố thỏa mãn yêu cầu đề bài. Khi đó, sẽ tồn tại các số nguyên dương

\[n,\,k\] sao cho \({n^2} + 22q = {11^k}\). (1)

Do \({n^2} + 22q > 11\) nên \({11^k} > 11\); suy ra \(k \ge 2\). Vì thế, từ (1), ta có:

\(\left( {{n^2} + 22q} \right) \vdots {11^2}\). (2)

Do \(22q \vdots 11\) nên từ (1) suy ra, \({n^2} \vdots 11\); mà 11 là số nguyên tố, nên \({n^2} \vdots {11^2}\). (3)

Từ (2) và (3) suy ra, \(22q \vdots {11^2}\). Do đó,  \[q \vdots 11\]; mà \[q\] là số nguyên tố nên \(q = 11\).

Ngược lại, với \(q = 11\), ta có: \({33^2} + 22.11 = {11^2}.\left( {9 + 2} \right) = {11^3}\).

Vậy có duy nhất số q thỏa yêu cầu của đề bài là \(q = 11\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Rút gọn biểu thức

Ta có:

 \(\begin{array}{l}A = \frac{{x(\sqrt x - 2) + 2(\sqrt x - 1) + (2x - x\sqrt x - 2)}}{{(\sqrt x - 1)(\sqrt x - 2)}}\\ = \frac{{x\sqrt x - 2x + 2\sqrt x - 2 + 2x - x\sqrt x - 2}}{{(\sqrt x - 1)(\sqrt x - 2)}}\\ = \frac{{2\sqrt x - 4}}{{(\sqrt x - 1)(\sqrt x - 2)}} = \frac{{2(\sqrt x - 2)}}{{(\sqrt x - 1)(\sqrt x - 2)}} = \frac{2}{{\sqrt x - 1}}\end{array}\)

b) 

Ta có \(x = 3 + 2\sqrt 2 = {(\sqrt 2 + 1)^2}\)

Do đó: \(A = \frac{2}{{\sqrt {{{(\sqrt 2 + 1)}^2}} - 1}} = \frac{2}{{\sqrt 2 + 1 - 1}} = \sqrt 2 \).

Lời giải

Cho hình vuông \(ABCD\) có cạnh bằng 8. Trên cạnh \(BC\), lấy điểm \(M\) sao cho (ảnh 1)

Xét hai tam giác vuông \(ABM\)\(ADN\), ta có:

\(AB = AD\),\(\widehat {BAM} = \widehat {DAN}\) (hai góc nhọn có cạnh tương ứng vuông góc)

Do đó tam giác \(\Delta ABM = \Delta ADN\) (cạnh góc vuông – góc nhọn). Suy ra, \(DN = BM\) (1).

Qua \(M\) kẻ đường thẳng song song \(ID\) cắt \(NC\) tại \[E\].

Xét tam giác \(MNE\):

Do \(I\) là trung điểm của \(MN\)\(ID\,{\rm{//}}\,ME\), nên \(D\) là trung điểm của \(NE\). Vì thế \(DE = DN = BM\) (theo (1)). Suy ra, \(MC = CE\) (2)

Do \(I,D\) tương ứng là trung điểm của \(MN,\,NE\), nên \(ID\) là đường trung bình của tam giác. Do đó, \(DI = \frac{1}{2}EM\).

Xét tam giác vuông (tại C) MCE, theo định lí Pitago, ta có:

\(EM = \sqrt {M{C^2} + C{E^2}} = \sqrt {2M{C^2}} \)(do (2))

\( = \sqrt 2 MC = \sqrt 2 \left( {BC - BM} \right) = \sqrt 2 \left( {8 - 5} \right) = 3\sqrt 2 \).

Vì thế \(DI = \frac{{3\sqrt 2 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP