a) Cho \(m,\,p,\,r\) là các số nguyên tố thỏa mãn \(mp + 1 = r\). Chứng minh rằng \({m^2} + r\) hoặc \({p^2} + r\) là số chính phương.
b) Tìm tất cả các số nguyên tố \(q\), sao cho tồn tại số nguyên dương \(n\) để \({n^2} + 22q\) là một lũy thừa với số mũ nguyên dương của 11.
a) Cho \(m,\,p,\,r\) là các số nguyên tố thỏa mãn \(mp + 1 = r\). Chứng minh rằng \({m^2} + r\) hoặc \({p^2} + r\) là số chính phương.
b) Tìm tất cả các số nguyên tố \(q\), sao cho tồn tại số nguyên dương \(n\) để \({n^2} + 22q\) là một lũy thừa với số mũ nguyên dương của 11.
Quảng cáo
Trả lời:
a)Vì \(m,\,p\) là các số nguyên tố nên \(mp \ge 4\). Do đó, \(r \ge 5\). Mà \(r\) là nguyên tố nên r là số lẻ.
Vì thế, \(mp = r - 1\) là một số chẵn. Suy ra, trong hai số \(m,\,p\), có ít nhất một số bằng 2.
- Nếu \(m = 2\) thì \(r = 2p + 1\). Do đó:
\({p^2} + r = {p^2} + 2p + 1 = {\left( {p + 1} \right)^2}\),
Là một số chính phương.
- Nếu \(p = 2\) thì \(r = 2m + 1\). Do đó
\({m^2} + r = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2}\) là một số chính phương
b)Giả sử q là số nguyên tố thỏa mãn yêu cầu đề bài. Khi đó, sẽ tồn tại các số nguyên dương
\[n,\,k\] sao cho \({n^2} + 22q = {11^k}\). (1)
Do \({n^2} + 22q > 11\) nên \({11^k} > 11\); suy ra \(k \ge 2\). Vì thế, từ (1), ta có:
\(\left( {{n^2} + 22q} \right) \vdots {11^2}\). (2)
Do \(22q \vdots 11\) nên từ (1) suy ra, \({n^2} \vdots 11\); mà 11 là số nguyên tố, nên \({n^2} \vdots {11^2}\). (3)
Từ (2) và (3) suy ra, \(22q \vdots {11^2}\). Do đó, \[q \vdots 11\]; mà \[q\] là số nguyên tố nên \(q = 11\).
Ngược lại, với \(q = 11\), ta có: \({33^2} + 22.11 = {11^2}.\left( {9 + 2} \right) = {11^3}\).
Vậy có duy nhất số q thỏa yêu cầu của đề bài là \(q = 11\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hai tam giác vuông \(ABM\) và \(ADN\), ta có:
\(AB = AD\),\(\widehat {BAM} = \widehat {DAN}\) (hai góc nhọn có cạnh tương ứng vuông góc)
Do đó tam giác \(\Delta ABM = \Delta ADN\) (cạnh góc vuông – góc nhọn). Suy ra, \(DN = BM\) (1).
Qua \(M\) kẻ đường thẳng song song \(ID\) cắt \(NC\) tại \[E\].
Xét tam giác \(MNE\):
Do \(I\) là trung điểm của \(MN\) và \(ID\,{\rm{//}}\,ME\), nên \(D\) là trung điểm của \(NE\). Vì thế \(DE = DN = BM\) (theo (1)). Suy ra, \(MC = CE\) (2)
Do \(I,D\) tương ứng là trung điểm của \(MN,\,NE\), nên \(ID\) là đường trung bình của tam giác. Do đó, \(DI = \frac{1}{2}EM\).
Xét tam giác vuông (tại C) MCE, theo định lí Pitago, ta có:
\(EM = \sqrt {M{C^2} + C{E^2}} = \sqrt {2M{C^2}} \)(do (2))
\( = \sqrt 2 MC = \sqrt 2 \left( {BC - BM} \right) = \sqrt 2 \left( {8 - 5} \right) = 3\sqrt 2 \).
Vì thế \(DI = \frac{{3\sqrt 2 }}{2}\).
Lời giải
a)Với giả thuyết \(\widehat {{O_1}A{O_2}}\) là góc tù, ta có thế hình như ở trên.
Xét \(\left( {{O_1}} \right)\), ta có:
\(\widehat {AKM} = \widehat {MAB}\) (góc nọi tiếp và góc tạo bởi tiếp tuyến và một dây, cùng chắn cung AM không chứa D). (1)
Xét \(\left( {{O_2}} \right)\), ta có:
\(\widehat {MLB} = \widehat {MAB}\) (hai góc nội tiếp cùng chắn cung MB không chứa A). (2)
Từ (1) và (2), suy ra, \(\widehat {AKM} = \widehat {MLB}\).
Do đó, \(AK\,{\rm{//}}\,LB\) (vì có hai góc ở vị trí so le trong bằng nhau).
b)Xét \(\left( {{O_1}} \right)\) ta có:
\(\widehat {MDA} = \widehat {MAB}\) (góc nội tiếp và góc tạo bởi tiếp tuyến và một dây, cùng chắn cung AM không chứa D). (3)
Xét \(\left( {{O_2}} \right)\) ta có
\(\widehat {MAD} = \widehat {MBA}\) (góc tạo bởi tiếp tuyến và một dây, góc nội tiếp, cùng chắn cung AM không chứa B) (4)
Từ (3) và (4), suy ra, .
Do đó, \(\frac{{MA}}{{MD}} = \frac{{MB}}{{MA}}\); mà \(MC = MA\)(gt), nên \(\frac{{MC}}{{MD}} = \frac{{MB}}{{MC}}\). (5)
Do trong một tam giác, mỗi góc ngoài bằng tổng hai góc trong không kề với nó, nên cộng (3) và (4), vế theo vế, ta được:
\(\widehat {DMC} = \widehat {CMB}\) (6)
Từ (5) và (6), suy ra, .
Do đó, \(\widehat {DCM} = \widehat {CBM}\).
Vì thế, ta có:
\(\begin{array}{l}\widehat {DCB} = \widehat {DCM} + \widehat {MCB} = \widehat {CBM} + \widehat {MCB}\\ = 180^\circ - \widehat {BMC} = 180^\circ - (\widehat {BAM} + \widehat {MBA})\\ = 180^\circ - (\widehat {BAM} + \widehat {MAD})\quad ({\rm{do}}(4))\\ = 180^\circ - \widehat {BAD}\end{array}\)
Suy ra, \(\widehat {BAD} + \widehat {DCB} = 180^\circ \). Do đó, \(ABCD\) là tứ giác nội tiếp.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.