Câu hỏi:

10/01/2026 13 Lưu

Một ô tô khách và một ô tô tải chở vật liệu xây dựng khởi hành cùng một lúc từ bến xe khách Lai Châu đến trung tâm thị trấn Mường Tè. Do trọng tải lớn nên xe tải chở vật liệu xây dựng đi với vận tốc chậm hơn xe khách 10 km/h. Xe khách đến trung tâm thị trấn Mường Tè sớm hơn xe tải 1 giờ 6 phút. Tính vận tốc mỗi xe biết quãng đường từ bến xe khách thành phố Lai Châu đến trung tâm thị trấn Mường Tè là 132 km.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi vận tốc của xe tải là x (km/h) (x > 0)

Suy ra, vận tốc của xe khách là x +10 (km/h)

Thời gian đi hết quãng đường của xe tải là \(\frac{{132}}{x}\left( h \right)\) và xe khách là \(\frac{{132}}{{x + 10}}\left( h \right)\)

Vì xe khách đi nhanh hơn xe tải là 1 giờ 6 phút = \(\frac{{11}}{{10}}\left( h \right)\)  

Nên ta có phương trình:

 \(\begin{array}{l}\frac{{132}}{x} - \frac{{132}}{{x + 10}} = \frac{{11}}{{10}}\\ \Rightarrow 132.10\left( {x + 10} \right) - 132.10x = 11x\left( {x + 10} \right)\\ \Leftrightarrow {x^2} + 10x - 1200 = 0\end{array}\)

Giải phương trình ta được x1 = – 40 (loại); x2 = 30 (thỏa mãn)

Vậy vận tốc của xe tải là 30 km/h và xe khách là 40 km/h.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Cho Parabol là đồ thị hàm số y = -1/2 x ^2 (ảnh 1)

b. Xét phương trình hoành độ giao điểm của (d)  và (P):

\( - \frac{1}{2}{x^2}\)=\(mx + m - 1\)\( \Leftrightarrow {x^2} + 2mx + 2m - 2 = 0{\rm{  }}\left( 1 \right)\)

Phương trình (1) có \(\Delta ' = {m^2} - 2m + 2 = {(m - 1)^2} + 1 > 0\) với mọi m. Phương trình (1) luôn có hai nghiệm phân biệt. Do đó (d) luôn cắt (P) tại hai điểm phân biệt.

Lời giải

Cho đường tròn tâm (O; R), từ một điểm A trên đường tròn kẻ tiếp tuyến d  với đường tròn tâm O. (ảnh 1)

a. Vì MA, MB là tiếp truyến của đường tròn (O) \( \Rightarrow \widehat {MAO} = 90^\circ ;\widehat {MBO} = 90^\circ \).

Ta có: \(\widehat {MAO} + \widehat {MBO} = 180^\circ \).

\( \Rightarrow AMBO\) nội tiếp đường tròn đường kính OM.

b. Ta có MA = MB (tính chất 2 tiếp tuyến cắt nhau) và OA = OB = R.

\( \Rightarrow \) MO là đường trung trực của đoạn thẳng AB \( \Rightarrow OM \bot AB\) tại I.

Ta lại có: \(\widehat {MAO} = 90^\circ \)(tính chất của tiếp tuyến)

\( \Rightarrow \Delta MAO\) vuông tại A.

Áp dụng hệ thức lượng trong tam giác vuông ta có:

\(OI.OM = O{A^2} = {R^2}\)  và \(OI.{\rm{ }}IM = I{A^2} = \frac{{A{B^2}}}{4}\) (đpcm).

c.    Ta có: \(OB \bot MB\) (tính chất của tiếp tuyến) và \(AK \bot MB\)(AK là đường cao của \(\Delta MAB\)).

\( \Rightarrow OB//AK{\rm{ hay }}OB//AH{\rm{  }}(1)\).

Chứng minh tương tự ta có: \(OA//BN{\rm{ hay }}OA//BH{\rm{  }}(2)\).

Từ (1) và (2) suy ra: tứ giác AOBN là hình bình hành.

Mà OA = OA = R.

\( \Rightarrow \) hình bình hành AOBN là hình thoi.

\( \Rightarrow \) AH = AO = R

Vậy khi M  di chuyển trên đường thẳng (d) thì H luôn cách A cố định một khoảng bằng R. Do đó, quỹ tích của điểm H khi M di chuyển trên đường thẳng (d) là nửa đường tròn tâm (A; AH), AH = R.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP