Câu hỏi:

13/01/2026 438 Lưu

Cho phương trình \({x^2} - 5x + 2 = 0\) có hai nghiệm là \({x_1},{x_2}\). Không giải phương trình, hãy tính giá trị của biểu thức: \(A = \sqrt {16x_1^2 + 8{x_1}{x_2} + 5{x_2} - 2} + 3{x_2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

PT đã cho có hai nghiệm phân biệt \({x_1},{x_2}\). Theo định lý Viét ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = 5}\\{{x_1} \cdot {x_2} = 2}\end{array}} \right.\)

Vì \[{x_1} + {x_2} = 5 > 0,{x_1}.{x_2} = 2 > 0\] nên \[{x_1},{x_2}\] là hai nghiệm dương phân biệt.
Vì \({x_2}\) là nghiệm của PT \({x^2} - 5x + 2 = 0\) nên \({x_2}{\;^2} - 5{x_2} + 2 = 0\) ha\(x_2^2 = 5{x_2} - 2\)

Ta có: \(A = \sqrt {16x_1^2 + 8{x_1}{x_2} + 5{x_2} - 2}  + 3{x_2}\)

\(A = \sqrt {16x_1^2 + 8{x_1}{x_2} + x_2^2}  + 3{x_2}\) \( = \sqrt {{{\left( {4{x_1} + {x_2}} \right)}^2}}  + 3{x_2}\) \( = \left| {4{x_1} + {x_2}} \right| + 3{x_2}\)

Vì \({x_1},{x_2}\) là hai nghiệm dương nên \(A = \left| {4{x_1} + {x_2}} \right| + 3{x_2} = 4\left( {{x_1} + {x_2}} \right) = 4.5 = 20\).

Vậy \(A = 20\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) \(\widehat {CEH} = 90^\circ \) (vì \(BE\) là đường cao \(\Delta ABC\)) suy ra \(E\) thuộc đường tròn đường kính \(CH\) hay \(E,H,C\) thuộc đường tròn đường kính \(CH\).
\(\widehat {CDH} = 90^\circ \) (vì \(AD\) là đường cao \(\Delta ABC\)) suy ra \(D\) thuộc đường tròn đường kính \(CH\) hay \(D,H,C\) thuộc đường tròn đường kính CH. Vậy \[4\] điểm \(C,E,H,D\) cùng thuộc đường tròn đường kính \(CH\)
b) Xét \(\Delta ADB\) và \(\Delta ACM\).

Ta có \(\widehat {ACM} = 90^\circ \) (góc nội tiếp chắn nửa dường tròn).
\(\widehat {ADB} = 90^\circ \) (vì \(AD\) là đường cao \(\Delta ABC\) ). Suy ra \(\widehat {ADB} = \widehat {ACM} = {90^{\rm{o}}}\) (1)
\(\widehat {ABC} = \widehat {AMC}\) (2 góc nội tiếp cùng chắn cung \(AC\) của \(\left( O \right)\) ) (2)
Từ (1) và (2) suy ra .

Ta có \(\frac{{AD}}{{AC}} = \frac{{BD}}{{MC}}\) suy ra \(AD \cdot MC = BD \cdot AC\)

c) Ta có \(CM\,{\rm{//}}\,BH\) (vì \({\rm{CM}},{\rm{BH}}\) cùng vuông góc với AC ).

\(BM//CH\) (vì \[BM,CH\] cùng vuông góc với \[AB\] ).

Suy ra tứ giác \(BHCM\) là hình bình hành. Khi đó hai đường chéo \(HK\) và \(BC\) cắt nhau tại trung điểm mỗi đường.
\( \Rightarrow K\) là trung điểm của \(HM\).
Ta có .

Ta có tứ giác \(AEHF\) nội tiếp đường tròn đường kính \(AH\)
\( \Rightarrow \widehat {AHF} = \widehat {AEF}\) (góc nội tiếp cùng chắn cung AF) \( \Rightarrow \widehat {AEF} = \widehat {ABI}\).

Từ chứng minh phần b ta có
Xét \(\Delta APE\) và \(\Delta AIB\) có \(\widehat {ABI} = \widehat {AEF};\widehat {EAP} = \widehat {BAI}\)


Tương tự .

Vậy \(PI\,{\rm{//}}\,HK\).

Lời giải

a) Xét  vuông tại \(B\) ta có:
\({\rm{tan}}\widehat {ACB} = \frac{{AB}}{{BC}}\) suy ra \(AB = BC \cdot {\rm{tan}}\widehat {ACB} = 30 \cdot {\rm{tan}}60^\circ .\)
Do đó \(AB \approx 51,96\left( {{\rm{\;m}}} \right)\).

Vậy chiều cao của cây là \(51,96\left( {{\rm{\;m}}} \right)\)
b) Tại một thời điểm khác, người ta đo được bóng của tháp có độ dài \(BD = 90{\rm{\;m}}\). Tính góc \(\widehat {ADB}\) giữa tia nắng mặt trời và mặt đất vào thời điểm đó.
Xét \(\Delta ABD\) vuông tại \(B\) ta có: \({\rm{tan}}\widehat {ADB} = \frac{{AB}}{{BD}} = \frac{1}{{\sqrt 3 }}\) suy ra \(\widehat {ADB} = 30^\circ {\rm{.}}\)
Vậy góc giữa tia nắng và mặt đất bằng \(30^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP