Giải hệ phương trình \(\left\{ \begin{array}{l}x + 4y = 6\\3x - 4y = 2\end{array} \right.\)
Quảng cáo
Trả lời:
\(\left\{ \begin{array}{l}x + 4y = 6\\3x - 4y = 2\end{array} \right.\)
\(\begin{array}{l}\left\{ \begin{array}{l}x + 4y = 6\\4x = 8\end{array} \right.\\\left\{ \begin{array}{l}x + 4y = 6\\x = 2\end{array} \right.\\\left\{ \begin{array}{l}x = 2\\y = 1\end{array} \right.\end{array}\)
Vậy hệ phương trình có nghiệm (x; y) = (2; 1).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Do MA, MB là tiếp tuyến của (O) nên MA \( \bot \) OA, MB \( \bot \) OB
Khi đó \(\Delta \)MAO vuông tại A nên M, A, O cùng thuộc đường tròn đường kính OM
\(\Delta \)MBO vuông tại B nên M, B, O cùng thuộc đường tròn đường kính OM
Vậy M, O, A, B cùng thuộc đường tròn đường kính OM hay tứ giác OAMB nội tiếp.
b) Ta có \(\widehat {ABC} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn) nên \(\Delta \)ABC vuông tại B
Khi đó \(\cos \widehat {OCB} = \frac{{BC}}{{AC}} = \frac{4}{{2.3}} = \frac{2}{3}\) suy ra \(\widehat {OCB} \approx 48,2^\circ .\)
c) Gọi H là giao điểm của OM và AB.
Ta có MA = MB (tính chất 2 tiếp tuyến cắt nhau) và OA = OB (cùng là bán kính)
Nên OM là trung trực của AB. Khi đó OM \( \bot \) AB tại trung điểm H của AB
Khi đó (g.g) suy ra \(O{A^2} = OH.OM\)
Mà OA = OC nên \(O{C^2} = OH.OM\) suy ra \(\frac{{OH}}{{OC}} = \frac{{OC}}{{OM}}\)
Kết hợp \(\widehat {COM}\) chung nên (c.g.c)
Suy ra \(\widehat {OHC} = \widehat {OCM}\) (hai góc tương ứng).
Do \(\Delta \)OHD vuông tại H và \(\Delta \)OCD vuông tại C nên O, H, C, D cùng thuộc đường tròn đường kính OD
Suy ra \(\widehat {OHC} = \widehat {ODC}\). Suy ra \(\widehat {OCM} = \widehat {ODC}\)
Mà \(\widehat {OCM} + \widehat {MCD} = 90^\circ \) nên \(\widehat {ODC} + \widehat {MCD} = {90^ \circ }\) hay \(\Delta \)CDN vuông tại N
Xét \(\Delta \)CDN và \(\Delta \)MCA có \(\widehat {DNC} = \widehat {MAC} = 90^\circ ,\,\,\widehat {ODC} = \widehat {OCM}.\)
Suy ra (g.g) (đpcm).
Lời giải
\(P = \left( {\frac{1}{{\sqrt x - 3}} + \frac{1}{{\sqrt x + 3}}} \right):\frac{{2\sqrt x }}{{x + 9}}\) với \(x > 0,x \ne 9\)
\(\begin{array}{l} = \left[ {\frac{{\sqrt x + 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} + \frac{{\sqrt x - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}} \right]:\frac{{2\sqrt x }}{{x + 9}}\\ = \frac{{\sqrt x + 3 + \sqrt x - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}:\frac{{2\sqrt x }}{{x + 9}}\\ = \frac{{2\sqrt x }}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}.\frac{{x + 9}}{{2\sqrt x }}\\ = \frac{{x + 9}}{{x - 9}}\end{array}\)
Vậy \(P = \frac{{x + 9}}{{x - 9}}\) với \(x > 0,x \ne 9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.