Một ly nước dạng hình nón có chiều cao là 18cm, đường kính miệng ly là 6 cm, lượng nước trong ly cao 12cm. Ly nước được đặt cố định trên mặt bàn bằng phẳng như hình vẽ bên. Tính thể tích của phần nước có trong ly.

Một ly nước dạng hình nón có chiều cao là 18cm, đường kính miệng ly là 6 cm, lượng nước trong ly cao 12cm. Ly nước được đặt cố định trên mặt bàn bằng phẳng như hình vẽ bên. Tính thể tích của phần nước có trong ly.

Quảng cáo
Trả lời:
Ta có hình nón lớn là cả ly có: chiều cao h = 18 cm và bán kính đáy R = 3 cm.
Hình nón nhỏ bên trong là phần nước có: chiều cao h = 12 cm và bán kính đáy r.
Vì nước chiếm phần dưới của hình nón lớn, cùng hình dạng nên hai hình nón đồng dạng.
Suy ra tỷ lệ các kích thước tương ứng bằng nhau nên \(\frac{r}{R} = \frac{h}{H} = \frac{{12}}{{18}} = \frac{2}{3}\) hay \(r = \frac{2}{3} \cdot 3 = 2\,({\rm{cm}})\).
Thể tích hình nón là \(V = \frac{1}{3}\pi {r^2}h\)
Áp dụng tính thể tích phần nước: \(V = \frac{1}{3}\pi {.2^2}.12 = \frac{1}{3}\pi .4.12 = 16\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right).\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Do MA, MB là tiếp tuyến của (O) nên MA \( \bot \) OA, MB \( \bot \) OB
Khi đó \(\Delta \)MAO vuông tại A nên M, A, O cùng thuộc đường tròn đường kính OM
\(\Delta \)MBO vuông tại B nên M, B, O cùng thuộc đường tròn đường kính OM
Vậy M, O, A, B cùng thuộc đường tròn đường kính OM hay tứ giác OAMB nội tiếp.
b) Ta có \(\widehat {ABC} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn) nên \(\Delta \)ABC vuông tại B
Khi đó \(\cos \widehat {OCB} = \frac{{BC}}{{AC}} = \frac{4}{{2.3}} = \frac{2}{3}\) suy ra \(\widehat {OCB} \approx 48,2^\circ .\)
c) Gọi H là giao điểm của OM và AB.
Ta có MA = MB (tính chất 2 tiếp tuyến cắt nhau) và OA = OB (cùng là bán kính)
Nên OM là trung trực của AB. Khi đó OM \( \bot \) AB tại trung điểm H của AB
Khi đó (g.g) suy ra \(O{A^2} = OH.OM\)
Mà OA = OC nên \(O{C^2} = OH.OM\) suy ra \(\frac{{OH}}{{OC}} = \frac{{OC}}{{OM}}\)
Kết hợp \(\widehat {COM}\) chung nên (c.g.c)
Suy ra \(\widehat {OHC} = \widehat {OCM}\) (hai góc tương ứng).
Do \(\Delta \)OHD vuông tại H và \(\Delta \)OCD vuông tại C nên O, H, C, D cùng thuộc đường tròn đường kính OD
Suy ra \(\widehat {OHC} = \widehat {ODC}\). Suy ra \(\widehat {OCM} = \widehat {ODC}\)
Mà \(\widehat {OCM} + \widehat {MCD} = 90^\circ \) nên \(\widehat {ODC} + \widehat {MCD} = {90^ \circ }\) hay \(\Delta \)CDN vuông tại N
Xét \(\Delta \)CDN và \(\Delta \)MCA có \(\widehat {DNC} = \widehat {MAC} = 90^\circ ,\,\,\widehat {ODC} = \widehat {OCM}.\)
Suy ra (g.g) (đpcm).
Lời giải
a) Bảng tần số
|
Điểm |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Tần số |
1 |
3 |
2 |
4 |
3 |
5 |
6 |
4 |
2 |
b) Số phần tử của không gian mẫu là n(\(\Omega \)) = 30.
Số học sinh đạt điểm lớn hơn 7 là: 6 + 4 + 2 = 12 (học sinh)
Do đó số phần tử của tập hợp A là n(A) = 12.
Xác suất của biến cố A là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{12}}{{30}} = 0,4\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.