Câu hỏi:

12/01/2026 30 Lưu

Phần 3. Trắc nghiệm trả lời ngắn

Cho đường tròn \(\left( C \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = 25\) tiếp xúc với đường thẳng \(d:3x + 4y + 1 = 0\) tại \(A\left( {1; - 1} \right)\). Tính \(\frac{a}{b}\) (biết \(a < 0\)).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

0,4

Lời giải

Đường tròn \(\left( C \right)\) có tâm \(I\left( {a;b} \right)\) và \(R = 5\).

Ta có \(\overrightarrow {IA}  = \left( {1 - a; - 1 - b} \right)\).

Đường thẳng \(d\) có một vectơ pháp tuyến là \(\overrightarrow n  = \left( {3;4} \right)\).

Vì đường tròn \(\left( C \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = 25\) tiếp xúc với đường thẳng \(d:3x + 4y + 1 = 0\) tại \(A\left( {1; - 1} \right)\) nên ta có hệ \(\left\{ \begin{array}{l}1 - a = 3k\\ - 1 - b = 4k\\{\left( {1 - a} \right)^2} + {\left( { - 1 - b} \right)^2} = 25\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}1 - a = 3k\\ - 1 - b = 4k\\9{k^2} + 16{k^2} = 25\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}1 - a = 3k\\ - 1 - b = 4k\\{k^2} = 1\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}1 - a = 3k\\ - 1 - b = 4k\\k =  \pm 1\end{array} \right.\].

Với \(k = 1\) thì \(\left\{ \begin{array}{l}a =  - 2\\b =  - 5\end{array} \right.\); Với \(k =  - 1\) thì \(\left\{ \begin{array}{l}a = 4\\b = 3\end{array} \right.\).

Vì \(a < 0\) nên \(\left\{ \begin{array}{l}a =  - 2\\b =  - 5\end{array} \right.\). Suy ra \(\frac{a}{b} = 0,4\).

Trả lời: 0,4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

\(\overrightarrow u  = \overrightarrow a  + \overrightarrow b  = \left( { - 1 + 3;2 + \left( { - 2} \right)} \right) = \left( {2;0} \right)\). Chọn C.

Lời giải

Lời giải

Vì một tín hiệu âm thanh phát đi từ một vị trí \(I\left( {x;y} \right)\) và được ba thiết bị ghi tín hiệu tại ba vị trí \(O\left( {0;0} \right),A\left( {1;0} \right),B\left( {1;3} \right)\) nhận được cùng một thời điểm nên \(IO = IA = IB\).

Khi đó ta có hệ phương trình \(\left\{ \begin{array}{l}{x^2} + {y^2} = {\left( {x - 1} \right)^2} + {y^2}\\{\left( {x - 1} \right)^2} + {y^2} = {\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 2x + 1 = 0\\ - 6y + 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{1}{2}\\y = \frac{3}{2}\end{array} \right.\).

Vậy \(x + y = \frac{1}{2} + \frac{3}{2} = 2\).

Trả lời: 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(\overrightarrow {AB}  = \left( {2;3} \right)\).

Đúng
Sai

b) \(AC = 2\sqrt 6 \).

Đúng
Sai

c) Tọa độ điểm \(C\) là \(C\left( {0; - 5} \right)\).

Đúng
Sai
d) Diện tích tam giác \(ABC\) là \(6,5\) (đơn vị diện tích).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(M\left( { - 3;4} \right)\).        
B. \(M\left( { - 3; - 4} \right)\).  
C. \[M\left( {3;4} \right)\].
D. \(M\left( {3; - 4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2x + 3y + 8 = 0\). 
B. \(2x + 3y - 8 = 0\). 
C. \(3x - 2y - 1 = 0\).  
D. \(3x - 2y + 1 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({x^2} + {y^2} - 6x + 4y + 13 = 0\). 
B. \({x^2} + {y^2} + 2x - 4y + 9 = 0\).                         
C. \(2{x^2} + 2{y^2} - 6x - 4y - 1 = 0\).
D. \(2{x^2} + {y^2} + 2x - 3y + 9 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP