Câu hỏi:

29/01/2026 7 Lưu

Cho hai đường tròn đồng tâm (O; R) và \(\left( {{\rm{O}};\frac{{{\rm{R}}\sqrt 3 }}{2}} \right)\). Trên đường tròn nhỏ lấy một điểm M. Tiếp tuyến tại M của đường tròn nhỏ cắt đường tròn lớn tại A và B. Tia OM cắt đường tròn lớn tại C.

            a) Chứng minh rằng .

            b) Tính số đo của hai cung AB.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hai đường tròn đồng tâm (O; R) (ảnh 1)

a) Ta có \(OM \bot AB\)(tính chất của tiếp tuyến),

\(\Delta AOB\) cân tại \(O,\) suy ra \(\widehat {{O_1}} = \widehat {{O_2}},\) do đó

(vì hai góc ở tâm bẳng nhau thi hai cung bị chắn bằng nhau).

b) Ta có \(MA = MB\)(đường kính vuông góc với dây cung).

\(M{A^2} = O{A^2} - O{M^2} = {R^2} - {\left( {\frac{{R\sqrt 3 }}{2}} \right)^2} = \frac{{{R^2}}}{4}\)

\( \Rightarrow MA = \frac{R}{2}\), do đó \(AB = R.\) Tam giác \(AOB\) có ba cạnh bằng nhau nên là tam giác đều.

Vậy sđ  AOB^=60° nên  ABnho=60°sđ  ABlon=300°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a. Cho đường tròn (O) đường kính AB, M là điểm chính giữa của một nửa đường tròn, C là điểm bất kì trên nửa đường tròn kia, CM cắt AB tại D. Vẽ dây AE vuông góc với CM tại F.  a) Chứng minh rằng tứ giác ACEM là hình thang cân. (ảnh 1)

a.   Ta có 

Suy ra  do các tam giác \(\Delta FAC\) và \(\Delta FEM\) vuông cân tại \(F,\) do đó \(AE = CM.\) Ta có \(\widehat {CAE} = \widehat {AEM}\left( { = 45^\circ } \right)\)

\( \Rightarrow AC\)//\(ME\), dẫn tới từ giác \(ACEM\) là hình thang cân.

b.    Ta có \(CH\)//\(OM \Rightarrow \widehat {HCM} = \widehat {OMC}.\)

Mặt khác, \(\widehat {OCM} = \widehat {OMC}\)

suy ra \(\widehat {HCM} = \widehat {OCM} \Rightarrow \)Tia \(CO\) là tia phân giác của góc \(HCO\).

c.      

\( \Rightarrow \frac{{CD}}{{MD}} = \frac{{CH}}{{MO}} = \frac{{DH}}{{DO}} \le 1 \Rightarrow CD \le MD\) hay \(CD \le \frac{1}{2}CM.\) Do đó \(CD \le \frac{1}{2}AE.\)

Lời giải

Cho tam giác \[ABC{\rm{ } (ảnh 1)

Mặt khác, \(\widehat {MAN} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)
Mà \(AM\) là phân giác trong góc A, nên AN là phân giác ngoài góc A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP