Cho tam giác ABC nội tiếp đường tròn (O; R) . Biết \(\widehat A = \alpha < {90^o}\). Tính độ dài BC
Cho tam giác ABC nội tiếp đường tròn (O; R) . Biết \(\widehat A = \alpha < {90^o}\). Tính độ dài BC
Quảng cáo
Trả lời:

Vẽ đường kính \(BD\), được \(\widehat {BCD} = 90^\circ \) và \(\widehat {BDC} = \widehat A = \alpha .\)
Xét \(\Delta BCD\) vuông tại \(C\), có: \(BC = BD.\sin D = 2R.\sin \alpha .\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a. 
a. Ta có
Suy ra do các tam giác \(\Delta FAC\) và \(\Delta FEM\) vuông cân tại \(F,\) do đó \(AE = CM.\) Ta có \(\widehat {CAE} = \widehat {AEM}\left( { = 45^\circ } \right)\)
\( \Rightarrow AC\)//\(ME\), dẫn tới từ giác \(ACEM\) là hình thang cân.
b. Ta có \(CH\)//\(OM \Rightarrow \widehat {HCM} = \widehat {OMC}.\)
Mặt khác, \(\widehat {OCM} = \widehat {OMC}\)
suy ra \(\widehat {HCM} = \widehat {OCM} \Rightarrow \)Tia \(CO\) là tia phân giác của góc \(HCO\).
c.
\( \Rightarrow \frac{{CD}}{{MD}} = \frac{{CH}}{{MO}} = \frac{{DH}}{{DO}} \le 1 \Rightarrow CD \le MD\) hay \(CD \le \frac{1}{2}CM.\) Do đó \(CD \le \frac{1}{2}AE.\)
Lời giải

Mà \(AM\) là phân giác trong góc A, nên AN là phân giác ngoài góc A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.