Câu hỏi:
12/06/2020 573Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) trên khoảng (−;+);
b) trên khoảng
Quảng cáo
Trả lời:
a) trên khoảng (−;+);
Từ đó ta có min f(x) = −1/4; max f(x) = 1/4
b) trên khoảng
y′ = 0 ⇔ x = π
Hàm số không có giá trị nhỏ nhất. Giá trị lớn nhất của hàm số là: max y = y(π) = −1.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
s = 6 − , t > 0
Vận tốc chuyển động là v = s’ , tức là v = 12t – 3
Ta có: v’ = 12 – 6t
v’ = 0 ⇔ t = 2
Hàm số v đồng biến trên khoảng (0;2) và nghịch biến trên khoảng (2;+).
Vận tốc đạt giá trị lớn nhất khi t = 2. Khi đó max V = = v(2) = 12(m/s).
Lời giải
Đặt f(x) = – 3 (C1)
y = m (C2)
Phương trình – 3 – m = 0 có ba nghiệm phân biệt khi và chỉ khi (C1) và (C2) có ba giao điểm.
Ta có:
f′(x) = 3 − 6x = 3x(x − 2) = 0
Bảng biến thiên:
Suy ra (C1), (C2) cắt nhau tại 3 điểm khi -4 < m < 0
Kết luận : Phương trình – 3 – m = 0 có ba nghiệm phân biệt với những giá trị của m thỏa mãn điều kiện: -4 < m < 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.