Câu hỏi:

24/06/2020 10,396

Cho tứ diện ABCD có AD (ABC) và BD  BC. Khi quay tất cả các cạnh của tứ diện đó quanh cạnh AB có những hình nón nào được tạo thành ? Hãy kể tên các hình nón đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tứ diện ABCD có BAD = 90° nên ABD = α là một góc nhọn. Khi quay các cạnh của tứ diện đó xung quanh cạnh AB thì cạnh BD tạo thành một hình nón tròn xoay đỉnh B có trục là AB, cạnh AD vuông góc với AB tạo thành đáy của hình nón đó.

Mặt khác theo giả thiết ta có BD  BC nên AB  BC. Ta có BAC = β là một góc nhọn. Do đó khi quay các cạnh của tứ diện xung quanh cạnh AB thì cạnh AC tạo thành một hình nón tròn xoay đỉnh A có trục là AB, còn cạnh BC tạo thành đáy của hình nón.

Như vậy khi quay tất cả các cạnh của tứ diện xung quanh trục AB thì các cạnh BD và AC tạo thành hai hình nón.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi I là tâm của hình lập phương. Tất cả các đỉnh của hình lập phương đều có khoảng cách đến I bằng Giải sách bài tập Toán 12 | Giải sbt Toán 12 nên chúng nằm trên mặt cầu tâm I bán kính Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có diện tích mặt cầu đó là S=4πr2=3πa2

Lời giải

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đường tròn đáy của hình nón tròn xoay đỉnh A tạo nên bởi cạnh AB là đường tròn ngoại tiếp tam giác đều A’BD, tam giác này có cạnh bằng a2 và có đường cao bằng Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó đường tròn đáy hình nón có bán kính Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hình nón tròn xoay này có đường sinh l = a và có diện tích xung quanh là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12