Câu hỏi:

31/01/2021 19,184

Vị trí tương đối của hai mặt cầu: x2 + y2 + z2 + 2x - 2y - 2z - 7 = 0 và x2 + y2 + z2 + 2x + 2y + 4z + 5 = 0 là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Mặt cầu: x2 + y2 + z2 + 2x - 2y – 2z – 7 = 0 có tâm I(-1; 1;1) và R = 10

Mặt cầu: x2 + y2 + z2 + 2x + 2y + 4z + 5= 0 có tâm I’( -1; -1; -2) và R’ = 1

II' = -1--12+-1-12+-2-12=13<10+1=R+R'

Do đó, hai mặt cầu này cắt nhau.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Phương trình nào dưới đây là phương trình của một mặt cầu?

Lời giải

Đáp án C

Sử dụng phương trình x2 + y2 + z2 - 2ax - 2by - 2cz + d = 0 là phương trình của một mặt cầu khi và chỉ khi a2 + b2 + c2 - d > 0

+ Phương án A và B không thỏa mãn điều kiện a2 + b2 + c2 - d > 0

+ Phương án C: 3x2 + 3y2 + 3z2 - 6x - 7y - 8z + 1 = 0

Nên đây có là phương trình mặt cầu.

+ Phương án D: (x - 1)2 + (y - 2)2 + (z - 3)2 + 10 = 0

 (x - 1)2 + (y - 2)2 + (z - 3)2 = -10 nên không là phương trình mặt cầu.

Câu 2

Trong không gian Oxyz, ba điểm nào dưới đây lập thành ba đỉnh của một tam giác?

Lời giải

Đáp án B

Để ba điểm A, B,C lập thành ba đỉnh của 1 tam giác khi và chỉ khi ba điểm A, B,C không thẳng hàng hay hai vecto ABAC không cùng phương

Xét phương án B ta có:

AB = (4; -6; -4); AC = (5; -4; -1)

Suy ra hai vecto này không cùng phương hay 3 điểm A, B, C không thằng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1;-2;-3) và đi qua điểm M(-1;0;-2). Phương trình của mặt cầu (S) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong không gian Oxyz, cho mặt cầu (S) đi qua bốn điểm O, A(-4;0;0), B(0;2;0), C(0;0;4). Phương trình của mặt cầu (S) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay