Câu hỏi:

09/07/2020 1,181

Trên mặt phẳng tọa độ Oxy, hãy xác định vị trí của mỗi điểm A(-1; -1), B(-1; -2), C(√2; √2) đối với đường tròn tâm O bán kính 2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để học tốt Toán 9 | Giải bài tập Toán 9

Gọi R là bán kính của đường tròn O: R = 2

Ta có:

OA2 = 12 + 12 = 2 => OA = √2 < R

=> A nằm bên trong (O)

OB2 = 12 + 22 = 5 => OB = √5 > R

=> B nằm bên ngoài (O)

OC2 = (2)2 + (2)2 = 4 => OC = 2 = R

=> C nằm trên (O)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai điểm A và B.

a) Hãy vẽ một đường tròn đi qua hai điểm đó.

b) Có bao nhiêu đường tròn như vậy ? Tâm của chúng nằm trên đường nào ?

Xem đáp án » 12/07/2024 12,290

Câu 2:

Chứng minh các định lí sau:

a) Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền

b) Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp thì tam giác đó là tam giác vuông.

Xem đáp án » 09/07/2020 5,923

Câu 3:

Trên hình 53, điểm H nằm bên ngoài đường tròn (O), điểm K nằm bên trong đường tròn (O). Hãy so sánh (OKH) ̂ và (OHK) ̂.

Xem đáp án » 12/07/2024 5,886

Câu 4:

Cho đường tròn (O), A là một điểm bất kì thuộc đường tròn. Vẽ A’ đối xứng với A qua O (h.56). Chứng minh rằng điểm A’ cũng thuộc đường tròn (O).

Giải bài tập Toán 9 | Giải Toán lớp 9

Xem đáp án » 12/07/2024 4,256

Câu 5:

 Hãy nối mỗi ô ở cột trái với một ô ở cột phải để được khẳng định đúng:

(1) Nếu tam giác có ba góc nhọn(4) thì tâm của đường tròn ngoại tiếp tam giác đó nằm bên ngoài tam giác
(2) Nếu tam giác có góc vuông(5) thì tâm của đường tròn ngoại tiếp tam giác đó nằm bên trong tam giác
(3) Nếu tam giác có góc tù(6) thì tâm của đường tròn ngoại tiếp tam giác đó là trung điểm của cạnh lớn nhất
 (7) thì tâm của đường tròn ngoại tiếp tam giác đó là trung điểm của cạnh nhỏ nhất

Xem đáp án » 09/07/2020 1,626

Câu 6:

Cho hình chữ nhật ABCD có AB = 12cm, BC = 5cm. Chứng minh rằng bốn điểm A, B, C, D thuộc cùng một đường tròn. Tính bán kính của đường tròn đó.

Xem đáp án » 09/07/2020 1,420
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay